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Abstract

The Internet of Things is an especially prominent vector of evolution for commercial
applications, including smart-home ecosystems. An IoT ecosystem is an ensemble of
web-connected devices able to collect, send and act on environmental data. Individual
manufacturers employ proprietary data models to endow their devices with ad-hoc
properties, functionalities and relationships.

When a 3rd-party ecosystem integration is required in a product, a common
language needs to be defined, overarching foreign data models, so that all devices
may be interacted with. To address this need, an integrator must use a local or
remote middleware, whose deployment affects response times, user functionalities, and
maintainability. The former option is less general but incurs less latency; the latter is
more versatile, at the cost of higher latency and more complex data exchange. This
thesis surveys and compares state-of-the-art integration strategies, and formulates two
original solutions.
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Chapter 1

Problem statement

1.1 Context overview
In the last twenty years, the raise of the Internet contributed to make significant changes
in modern societies. Novel application domains have emerged, some of which are social
networks, smart-connected networks, and most prominently Internet of Things. In this
era of evolution, IoT plays a core role for commercial applications, especially in domotic
[6]. As a matter of fact, many modern home devices are also labeled smart, meaning
that they are capable of connecting to the Internet, exchanging data with other devices
and interacting with human beings through software applications. Therefore, smart
devices are interconnected with the external world and employed for smart-home and
consumer electronics. These devices are generally sensors or actuators that are directly
accessed by the final user through a simple interface. Such capabilities enable users to
address multiple needs from the functional viewpoint. Some of these needs are:

• remote light switches control (e.g. on/off, intensity);

• scheduled tasks – or routines – execution (e.g. open all home window shades in
the morning);

• device automations to perform a pre-planned set of actions at once (e.g. turning
on a light triggers another light to turn on).

To successfully satisfy these needs, IoT requires a well-designed infrastructure
that can manage a growing number of heterogeneous and connected devices. This
aggregation of IoT devices compose an IoT ecosystem. As reported in a recent survey
of IoT networks [16], a big limitation occurs when designing an IoT infrastructure:
there is no standard networking protocol for IoT applications, meaning that a vendor
can freely choose any wired or wireless technology available (e.g. from [16]: Bluetooth,
ZigBee, LTE). Indeed, most manufactures tend to adopt at least a standard protocol
when designing a new IoT device, as opposed to inventing a custom one. Moreover,
manufacturers are not interested in creating a single device that supports all the
existing protocols, because it is unfeasible in terms of cost and maintainability. The
role of interoperability shall be delegated to an IoT gateway instead, which should
manage different IoT devices as an intermediary entity.

With these considerations in mind, an IoT network normally includes multiple
heterogeneous devices from multiple vendors. This leads to a variety of devices, which
can work according to a vendor’s IoT ecosystem. However, if the ecosystem is closed,
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2 CHAPTER 1. PROBLEM STATEMENT

few (if any) foreign devices can inter-operate with it, which is not what the end-user
wants. To address this need, an ecosystem must be open to 3rd-party device integration
(i.e. the integration of devices made by a foreign manufacturer with respect to the
ecosystem provider). Therefore, a manufacturer should accommodate the interaction
between its ecosystem and multiple external ecosystems by design (Figure 1.1). Several
solutions have been proposed around the concept of middleware [19].

Figure 1.1: IoT ecosystems interaction problem with two intermediary components to
control IoT devices of vendor A.

Nevertheless, determining which solution should be most convenient needs to take
stock of the current landscape and the emerging trends, through a comprehensive
survey. This is also essential to understand data flows of the IoT infrastructure and its
interconnections.

1.2 Data-model definition

Figure 1.2: Relationships between ontology, semantics, data and information to
compose a data-model.
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An IoT ecosystem is an ensemble of network-connected devices able to collect, send
and act on environmental data. Each manufacturer designs its ecosystem according
to its needs, based on a data-model. This data-model defines a formalism that uses
ontology and semantics to interpret interactions with devices in an ecosystem. The
ontology defines in a structured manner the semantics conveyed by the entities of
interest, while semantics captures the intended meaning of information items. Data
is expressed through symbols and has a syntactic format, thanks to which information
is extracted. Therefore, data becomes information through symbols interpretation.
For example, an IoT device transmits data to report a huge variety of values belonging
to a sensor (e.g. temperature, on/off status, light intensity). Figure 1.2 shows the
relationships of the terminology just defined.

Figure 1.3: Example of a data-model to express the status of a light bulb.

An example may clarify: the data-model of a light bulb. A light has a status
that tells whether it is turned on or off. To express this status, a manufacturer can
choose either integers (i.e. 0, 1) or boolean values (i.e. TRUE, FALSE) to use as data
symbols. Moreover, a syntactic data format must be employed to represent this status
(e.g. a key-value format like status=1). Symbols and syntax rules constitutes data
representing the status of a light. However, a foreign manufacturer that wants to
interpret symbols must know semantics in order to understand the intended meaning
of information items in a precise context. Therefore, Figure 1.3 shows that information
is extracted from data through symbols interpretation and contextualization.

In this work, these concepts are essentials to understand how data is processed
through various components of an IoT ecosystem.

1.3 IoT ecosystems

An IoT ecosystem aims at empowering the communication with several device types,
both in a local network (e.g. in-house devices) and remote network (e.g. Internet-
connected devices). Each device can be interpreted as a node, meaning that is capable
of intercommunicating with other entities in a network. Each node is equipped with a
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wireless (or wired) network technology, which is able to collect data from the physical
environment, exchange it with other nodes and send it through the Internet to a
remote node. This requires a sustainable way to handle and organize data to avoid
incurring network congestion so that the growing network remains stable over time.
This means that the network will be not subject to slowdowns or failures during
its operation. Moreover, interoperability between devices in the same network is a
requirement for manufacturers, while end users demand for transparency. If a node
is capable of extracting information from data provided by a different vendor’s node,
then the awareness of the surrounding environment is enhanced. This means that all
nodes in the network can intercommunicate with each other. Specifically, one node is
aware that other nodes exist and so it can ask for data. In order to understand the
concepts of interoperability and transparency, there are three concerns that need to be
analyzed:

• The first concern pertains the structure and relationships of different compo-
nents to build an IoT architecture, that satisfies multiple needs for users and
manufacturers (e.g. remote device control).

• The second concern is the smart-home infrastructure, which involves the
design of a specific IoT architecture along with home-related services and devices.

• The third and last concern is an anticipation of future IoT evolution with emerging
IoT challenges. These challenges reflect commercial needs for manufacturers
and functional needs for end users such as security, privacy and context-awareness.

1.3.1 IoT architectures

Figure 1.4: IoT architecture views proposed in article [17].
Source: recreated from [17]

In recent literature, the authors of [17] generalize IoT in a 3-layer architecture. At
the highest level of the architecture corresponds an abstraction of IoT objects (e.g.
capabilities, information), while at the lower level devices are defined (e.g. raw data).
The structure is defined as a generic three-level IoT architecture (Figure 1.4) and
consists of:
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• the application layer, giving end-users access to readable information and usable
services;

• the network layer, which supports data transmission among devices and services;

• the perception layer, which handles network routes and IoT devices equipped
with sensors or actuators.

More recently, this kind of architecture became unable to capture all features of
modern IoT systems. According to [16], [2] and [17], the IoT architecture can be
interpreted in a 4 or 5-layer architecture. In this case, the 5-layer architecture is
taken into account as a specialization of simpler architectures.

Starting from the surface, the business layer provides analytics, data processing
and usage statistics from the acknowledged information of the lower layer. In practice,
this is the part that manufacturers use to decide improvements and refinements to
act on devices in production. This task is essential from the commercial viewpoint,
because not only technology is important, but also how the device functionalities are
delivered to customers.

The layer below the business layer is called application layer. This layer provides an
interface for the end users to acquire information extracted from data received from the
underlying layers. Moreover, it is capable of hosting several sets of services, depending
on the context: smart-homes [2], providing functionalities to smart appliances and home-
related devices; health-care [22], providing ad-hoc devices to measure blood-pressure
and heart-rate monitor to constantly tracking health condition of a patient; smart-
industry [23], which provides IoT machines (e.g. 3D printers) and monitoring tools
to improve productivity of industrial processes; and autonomous driving [11], whose
objective is to equip cars with self-driving functionalities regarding object detection,
trajectory detection and decision logic. In the end, this layer hides the complexity
and the heterogeneity underneath, while providing clear information comprehensible
for the end user. As a matter of fact, data is processed in the lower layers, which are
closer to IoT devices and data sources. In academic literature [16], the application
layer is also referred to service layer.

The third layer is called processing layer, but sometimes it is also referred to
support layer, platform layer or middleware layer. The main purpose of this layer
is to store and interpret data received from the lower layers. Here, the semantics is
employed to understand the intended meaning of information items extracted from
data comprehensible for IoT devices; then, data becomes available to the upper layer
(the application layer), whose purpose is to serve it in a form of application service.
This layer, instead, does not provide any kind of service to the end user but handles the
entire logic underneath. This layer is also in support of context-awareness, predictions
and cooperation among things. However, the data analysis are a bit different with
respect to the business layer. In fact, in the processing layer data is pure and clean,
while in the business layer data is enhanced in terms of information items according to
user interactions from the application layer. For example, if a user interacts with a
light switch on a mobile app, the processing layer will use the data to send the action
to the device, while the business layer will interpret this act as a statistic to learn user
behavior.

The network layer is the fourth layer of the architecture. It is used to transmit
data among devices through the network. Hence, this layer uses routers, gateways and
hubs to handle the connection with multiple devices at the lower layer. Here, raw data
is received from lower-layer devices and is routed to other devices or to the upper layer.
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This layer is also responsible for ruling the network traffic among different devices
underneath.

The perception layer is the lowest layer of the architecture. In this layer, there
are devices capable of communicating raw data perceived from the environment. Then,
data is sent towards a gateway or a hub, belonging to the upper layer. The type of
devices in this layer may vary from sensors to actuators. Generally, these devices
are smart enough to autonomously send data to the upper layer using a pre-defined
network protocol (e.g. ZigBee, BLE).

Figure 1.5: IoT five-layer architecture view proposed in this work.

Figure 1.5 shows a vision of an IoT ecosystem that can be seen as a 5-layer stack.
Though, in each layer a manufacturer can choose between a variety of standard
protocols, network technologies and applications to provide different options to users.
This necessity creates a huge heterogeneity in IoT ecosystems that leads to massive
decrease of interoperability. Vendors must confront with the IoT market, which
continually demands new functionalities. Therefore, as also shown in [20], IoT vendors
should consider the inter-operation of heterogeneous devices and systems as a core point
of the infrastructure, thus opening the ecosystem to 3rd-party vendors. Such vendors
will have the possibility to satisfy a higher number of market needs, which consequently
will give in return a higher number of clients. In order to attain interoperability, both
the perception layer and the application layer may have to be involved. The former
layer provides interoperability through standard protocols such as ZigBee, Bluetooth
and Z-Wave. To achieve this, a 3rd-party vendor must implement in their devices a
protocol, which is the same used by a gateway or a hub of the proprietary vendor
from the network layer. On the other hand, the latter layer – i.e. perception layer –
requires apps integration via Cloud through the use of a common interface, at higher
level of abstraction. Therefore, the authors of [2] put forward open challenges for the
provision of frameworks that can support the production of interoperable smart-home
ecosystems. Before exposing these challenges, smart-homes must be defined to properly
understand their architecture.
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1.3.2 The idea behind smart-homes

The smart-home domain is considered an important research ambit in IoT applications.
The main purpose of smart-homes is to provide interconnected devices inside a house
that are able to interact with other nodes – and humans – via a local or remote network.
Report [2] analyzes the concept of smart-homes in the light of end-user applications and
current challenges. In fact, in the last decade, smart-homes achieved huge popularity
considering the comfort and quality of life. A user can buy all the needed home-
related smart appliances, and then everything is controlled through a smartphone
app or a software application. In a broader context, smart-homes are considered
an extension of building automation, which involves the control and automation of
embedded technology. A smart-home ecosystem is made of IoT devices equipped with
sensors and actuators connected to a network gateway. The gateway can be connected
to the Internet and linked to a Cloud service (e.g. a remote server) to exchange
data. Although newer IoT devices are installed, this entire structure should provide an
adaptive and progressive ecosystem, which welcomes the constantly-changing needs of
home residents. Moreover, manufacturers provide progression and adaptation of IoT
ecosystem through firmware and software updates, enabling IoT devices, gateways and
server to accommodate new features and new smart-home devices in the future. As
reported in [6], the smart-home architecture require at least a few core components to
be defined, reflecting the IoT ecosystem structure (Figure 1.5).

• Firstly, IoT devices are the source where data and measurements are collected.
In fact, devices are generally equipped with sensors, to read data from the
environment, and actuactors, to provision and execute commands. A few examples
are thermostats, temperature sensors, light switches, energy meters and roller
shutter modules. Therefore, IoT devices can be naturally associated to the
perception layer.

• Secondly, a network gateway and a server are required to pass data and
process actions, respectively. A network gateway is used in-home to provide
network traffic rules and Internet connectivity, while a server can be placed in-
home or in-cloud to provide a compute unit. In addition, there are also in-home
powerful gateways in support of a Cloud server. These gateways have enough
power to rule network traffic and to interpret data using drivers. These drivers
are placed and executed in powerful gateways to interact with a specific IoT
device, without demanding computation to the Cloud. Eventually, gateways and
server are associated to the network layer and the processing layer.

• Thirdly, a database is needed to store collected data and to perform data analysis,
as well as data visualization. Databases can be defined in the form of relational
and non-relational structures, depending on the needs of the manufacturer.
Therefore, this component belongs to the processing layer.

• Furthermore, an APIs (Application Programming Interfaces) are required to
allow external application to manipulate the existing system, following pre-defined
paradigms. For example, an API can serve data to external agents, send push
notification and also fulfill user-desired actions, according to what a manufacturer
decided to expose. Therefore, APIs can be used to send data to a Mobile App or
collect statistics that are used for profiling. Accordingly, this part is associated
to the application layer.
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Figure 1.6: Smart-home components in parallel with the proposed five-layer
architecture of IoT.

With this structure in mind, Figure 1.6 should represent in a cleaner way these
entities. In this picture, the analytics belongs to the business layer, whose function
was already discussed in §1.3.1. This architecture addresses several user needs in terms
of home automation, but it also raises new issues regarding device interoperability,
security and privacy. Now, these issues must be addressed properly around the context
of smart-home and IoT in general.

1.3.3 Challenges of modern IoT systems
As previously noted in §1.3.1, interoperability is a huge and central challenge to allow
the co-existence of heterogeneous devices in an IoT ecosystem. At the same time,
the constant growth of IoT ecosystems opened new challenges regarding security,
privacy, context-awareness and energy-awareness of IoT devices. Security and privacy
challenges may affect the IoT architecture entirely. Meanwhile, context-awareness and
energy-awareness only affect lower levels of the IoT architecture in acknowledging the
behavior of other IoT devices. To better understand the problem, below we discuss
each challenge in isolation.

Starting from security, gateways in the network layer connect to the Internet in
order to widen the range of the convenience services availed to end users. However,
such services must be secured to mitigate security threats. First of all, many devices
allow remote management using an external server as an intermediary. This is a
security risk as information becomes controlled and accessible through multiple vectors
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(e.g. mobile application, desktop app, chat bots, etc.). Therefore, this requires proper
authentication management service. As a matter of fact, an attacker can control
devices remotely and use them to hack the entire system. Moreover, data exchanged
through multiple nodes – even inside the local network – can be easily eavesdropped and
altered. Hence, to ensure integrity and confidentiality of exchanged messages a proper
countermeasure must be provided inside the IoT ecosystem. Several security threats
have been discovered and reported in [1] and [2]. To overcome these threats, some
researches proposed solutions concerning new security frameworks to ensure device
authentication, availability and data integrity. Therefore, security framework adoption
by manufacturers would help prevent malicious code execution, data alteration and
information leakage. For example, the solution presented in [9] employs two modules:
the smart appliance module, to execute basic functions of the device, and the appliance
integrity module, acting as a monitor that checks the manufacturer’s signature across the
components of the device. These modules interact with two frameworks checking access
control privileges and execution rights. Overall, this solution provides a sophisticated
control mechanism that can be implemented in a single IoT device. This would allow
the device to prevent security threats for the end users such as data modification,
leakage and fabrication.

Figure 1.7: IoT challenges affecting the components of a Smart-Home.

As far as privacy is concerned, IoT devices are equipped with sensors and actuators
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that gather sensitive data from the user through embedded sensors (e.g. wearable
devices with heart-rate monitors, smartphones with pedometer apps, etc). This
collection of data is processed by service providers, which are capable of profiling a
user and re-use those statistics for commercial purposes. Therefore, private data is
considerably sensitive for a user and must be addressed correctly to avoid bad impacts
from the legal and ethical viewpoints. As an example, a privacy-aware framework has
been proposed [2], where each user should be able to define their privacy preferences
individually. Hence, this framework provides a complete control to the end user over
personal data shared to a service provider.

The context-awareness challenge concerns IoT devices placed inside an IoT
network and working with different contexts. In particular, context-awareness requires
an IoT device to interact with other nodes to adjust behaviors according to changes
of the surrounding network, without human intervention. In practice, as an example,
a home gateway should be capable of collecting interpretable data from IoT devices.
Then, the gateway should learn user behavior in order to be able to take appropriate
decisions depending on context. To achieve this, a query mechanism among devices is
required to enable any node to interrogate any other node to acquire information. For
example, this process can be realized through information exchange that is expressed
using the Web Ontology Language discussed in [10]. Moreover, by using a platform
with an appropriate reasoning algorithm (e.g. SOCAM), it would be possible to infer
high-level contexts from the available low-level context, so that everything is translated
to a service (e.g. sleeping, watching TV).

The energy-awareness challenge is also actively discussed nowadays. As shown in
[21], the energy price increased due to factors such as supply, demand and government
regulations. In addition, the consumption of electricity increased as well, affecting
environment (e.g. non-renewable electrical sources) and family budgets. As reported
in [2], by the end of 2040 the 13% of the world energy consumption will be energy used
in homes. Therefore, in the smart-home context, home appliances and IoT devices
should minimize energy consumption and waste. To address this problem, several
researchers suggested different approaches and solutions. First of all, the authors of
[25] proposed an Energy-Prone Context (EPC) system to model multiple contexts and
their associated energy consumption. This would help acquire historical data of each
appliance regarding power consumption with respect to the context. Another work
concerns IntelliHome, which is discussed in [21]. IntelliHome is a framework to reduce
energy consumption at home by using data analytics and Machine Learning techniques.
The idea is to apply Machine Learning to collect user habits and provide real-time
consumption, as well as energy savings recommendations. This approach is more social
with respect to the previous solution, and the aim is to actively involve the user in the
energy-savings process.

In conclusion of this section, we can say that many new challenges are appearing
with the growing number of IoT devices used in different domains. Smart-home is
an active application domain in which transparency is the key aspect for consumers
and interoperability is the key aspect for manufacturers. To address these aspects,
a solution that works for different device vendors must be adopted. As a matter of
fact, this solution acts as an intermediary that is able to understand different data
formats and semantics to accomplish data transport across foreign entities. Moreover,
this intermediary can be associated to a more powerful concept called middleware.
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1.4 The role of middleware

As discussed in §1.3.3, IoT challenges must be actively investigated to find viable
solutions. In this thesis, we introduce the concept of middleware as a support component
for the IoT architecture presented in §1.3.1. In general, a middleware is a powerful
entity that has multiple definitions. Around the context of software development, a
middleware is a component that fits (like glue) in the middle of other two components.
More specifically, a middleware is used as an intermediary between independent software
components, whose purpose is to help exchange data through a common interface. The
term middleware appeared originally in a report from the NATO Software Engineering
conference in Garmisch-Partenkirche (Germany) in the late 60’s [24]. It was defined
as a solution to provide interoperability of service routines, which were expensive to
adapt every time in newer application programs.

Over time, various middleware solutions have been used to link legacy services
in old operating systems to newer applications. This helped developers to work on
the high-level application disentangling themselves from the complexity of low-level
ad-hoc programming. Moreover, low-level components become re-usable for high-level
implementations. Let’s take for example a microservice architecture, which breaks
down an application in a collection of independent services. As shown in [86], a simple
microservice architecture has a back-end component with its database, a front-end
component and an Application Programming Interface (or API). This API can be
embedded with the back-end component and it is in fact a middleware, which operates
as an intermediary between front-end and back-end communication (see figure 1.8).

Figure 1.8: Example of a microservice architecture using an API to request a resource.
The API Client act as a middleware for the front-end microservice, while the API

Server act as a middleware for the back-end microservice.

Nowadays, this term is used in a huge variety of application software, as well as
Cloud and IoT architectures, according to respective meanings, as shown in [87].

In cloud software development, a middleware is a component that can help
developers to gradually transform monolithic applications into Cloud-native applica-
tions, through the Strangler Fig pattern. As shown in [79] and [80], this pattern is
applied by expanding a monolith application with a new microservice application, both
using a temporary API middleware. This middleware provides a common interface
(i.e. Strangler Façade in Figure 1.9) that keeps using the old monolith and the new
microservice cloud-native app. Developers need to gradually shift functionalities from
the old monolith to the new microservice by eliminating pieces of software. As soon as
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the microservice become self-sustained, the middleware is not used anymore and the
old monolith can be removed entirely.

Speaking of cloud architectures, a middleware is used to provide integration
among services through resource-centric APIs or data-centric APIs, connecting different
products. Furthermore, middleware solutions are employed to provide automation for
manual decisions in multiple stages of software development. This enhances the overall
efficiency and gives a remarkable improvement in resource management.

Figure 1.9: The Strangler pattern employed in the migration of a monolith app. The
Strangler Façade is an example of a middleware helping the migration.

When it comes to IoT, recent literature addresses middleware solutions in different
class types of architecture. The class types purpose is to compose IoT applications
to perform data collection and analysis without any low-level programming needed,
through the use of abstractions. In [19], three architecture class types are defined.

• The first type refers to a service-based solution, similar to a Service-Oriented
Architecture (SOA), where a single IoT device is identified as a service. This
architecture is also the one chosen by OpenIoT [26], a European Union project
that aims at standardize IoT platforms. As shown in Figure 1.10, there are
three components: a physical plane (with sensors and actuactors), a virtualized
plane (i.e. Cloud infrastructure) and a utility / application plane. The idea is to
provide the computational power inside the virtual plane, where data and events
are processed, and not on physical devices.

• The second type is called Cloud-based, which allows collecting and processing
raw data only with the deployment of the middleware on remote nodes (generally
in-cloud) or powerful local gateways. Functionalities are exposed via APIs and
can be accessed widely by 3rd-party Cloud platforms. However, this architectures
needs to adopt specific standard protocols to enable devices inter-operation (e.g.
HTTP REST APIs). Moreover, the middleware can stop working whenever the
Cloud provider ends the service.

• The third type is called actor-based solution. This architecture is divided in
three layers: the Sensory Swarm layer, made of sensors and actuators; the Cloud
layer, providing cloud services for the other two layers; the Mobile Access layer,
providing applications and services for smartphones and laptops. In each layer, a
light-weight middleware called actor host is used to provide computational power
through actors. These actors are pluggable computational units placed in an
actor host. Therefore, this solution allows computation to be performed across
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the entire architecture where it is most beneficial. Moreover, this architecture
embraces heterogeneity of IoT devices by using device abstractions, without the
need of a standard technology.

Figure 1.10: OpenIoT view representing an example of a Service-Oriented Architecture.
Source: [8]

Nevertheless, middelware’s definition for IoT ecosystem can be characterized differ-
ently with respect to previous architecture class types. As a matter of fact, commercial
IoT ecosystems do not reflect these architecture models entirely, because each service
provider design its own ecosystem based on its needs. In this thesis, an IoT middleware
is an essential part acting as a mediator, which understands one interface, applies logic
and computation, and then translates the computed result in the other interface’s
language. Therefore, an IoT middleware must not be addressed just like glue between
two components, whose main purpose is to pass data from one interface to the other.
Consequently, an IoT middleware must be able to interpret data symbols retrieved
from one interface and extract information. Then, information is used to recreate data
with the other interface’s data format. This way, the IoT middleware adapts data from
one format to the other, while preserving information.

Figure 1.11: Example of data processing in a middleware component handling two
interfaces. Interface A sends data to the middleware which is forwarded to interface B

after being processed with A and B semantics.
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To clarify this concept, Figure 1.11 shows an example with a middleware connected
to two interfaces. In this figure, interface A passes data (i.e. on_off=1) to the
middleware. Then, the middleware extracts information from data by interpreting
data symbols (e.g. 1 is the symbol). Semantics from interface A is used to express the
meaning of information items. Then, the middleware recreates data using the syntactic
format for interface B, according to interface B semantics. Lastly, the middleware
passes data (i.e. device_status=TRUE) to interface B.

As a result, information is preserved (i.e. the device is on) because the middleware
understands both interfaces, interprets symbols, extracts information and then re-
creates data for a different data-format and semantics. In conclusion, an IoT middleware
can be deployed in different forms, depending on the IoT architecture, and it is capable
to interpret and process data in different use cases, thus providing interoperability in
foreign components.

Figure 1.12: Middleware solutions proposed for 3rd-party integrations in an IoT
ecosystem.

In order to achieve interoperability, an IoT architecture must be equipped with
a component that is able to provide a common interface for a 3rd-party device or
a 3rd-party IoT ecosystem. A 3rd-party device is usually an IoT device from a
3rd-party manufacturer, which is integrated at the lowest level (i.e. perception layer)
of a foreign IoT ecosystem. In terms of benefits, this approach helps in satisfying user
needs of interoperability and does not require the creation of a Cloud component for
the IoT ecosystem by the 3rd-party manufacturer. Conversely, the control over the
foreign IoT ecosystem is very limited. For example, the UI for the end users is not
always customizable according to the 3rd-party vendor’s needs. In the 3rd-party IoT
ecosystem integration, the 3rd-party manufacturer adds the entire set of 3rd-party
devices in a foreign ecosystem, at the application level. This can be achieved via
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Cloud-2-Cloud integration, which requires the foreign Cloud to exchange data over the
3rd-party Cloud. This helps 3rd-party manufacturers to develop the integration on the
highest level of abstraction. Consequently, 3rd-party vendors do not expose the low
level implementation of their devices. However, any change from the lowest level must
be propagated correctly to keep the device working correctly. In addition, control over
foreign IoT ecosystem is still limited for 3rd-party manufacturers. In this case, the
business layer is also capable in providing statistics and analytics, by having control
over exchanged data. Meanwhile, in 3rd-party device integration these statistics can
be requested to the foreign IoT ecosystem’s owner.

As shown in Figure 1.12, these two integrations can be addressed via two middleware
solutions. The 3rd-party device integration happens locally, with respect to the network
layer. This means that the IoT device must locally interact with a gateway from the
network layer, which must be capable – as a middleware – to recognize the foreign
device and add it to the ecosystem. Specifically, these last two operations are executed
in the processing layer, besides other activities (e.g. device unpairing, etc). Therefore,
a local middleware component (e.g. driver, plugin) placed under the application
layer can be used to provide interoperability of 3rd-party devices. On the other hand,
the 3rd-party IoT ecosystem integration happens remotely, with respect to the network
layer. This means that the Cloud of the 3rd-party IoT ecosystem can create a link
with a foreign Cloud to exchange data. This link connects the IoT devices from one
ecosystem to the other, thus creating an external conjunction with two architectures.
Therefore, this integration can be realized at the application layer using a set of APIs
of each respective Cloud. In this case, a remote middleware will be a component
(e.g. microservice, function) interacting with both APIs to understand and elaborate
queries across two IoT ecosystems.

1.5 Objectives of this work
In the context of smart-home IoT ecosystems, several challenges – discussed in §1.3.3
and §1.3.1 – need to be addressed to satisfy user needs and concerns. One essential
problem that is transversal to the others in §1.3.3 is interoperability. In fact, many
smart-home users adopt more than a single ecosystem, because not always their needs
are satisfied by a single manufacturer. Therefore, open issues like security and privacy,
can be considered vertical issues. This means that the scope of these problems can be
limited within a single IoT ecosystem. Conversely, interoperability can be considered
an horizontal issue for 3rd-party integration. As a matter of fact, interoperability
requires data exchangeability and common protocols adoption by manufacturer to
expand IoT ecosystem with 3rd-party devices. Therefore, an IoT architecture must be
equipped with a component that is able to provide a common interface for a 3rd-party
device or a 3rd-party IoT ecosystem. As discussed in §1.4, middleware solutions
can be used to achieve interoperability via a local or remote integration, respectively.
These solutions are placed within critical components to provide a way to communicate
and interpret data on different levels of the IoT architecture.

Nevertheless, interoperability is not the only concern for manufacturers. When a
manufacturer designs its IoT ecosystem, many decision-making factors come into play
in support of interoperability.

• At first, a vendor must address which protocol should be adopted to seek best
interoperability with 3rd-party devices. However, not always the adoption to
a standard protocol is the best choice to make. For example, a vendor might
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want a specific functionality that cannot be achieved by the standard. On the
other hand, disregarding conformance to standards can reduce the number of
total installations.

• Secondly, the performance of the protocol must be considered with regards
to response times, signal coverage and power consumption. For example, some
sensors use batteries and so just a few technologies fit the needs of high energy
efficiency. Conversely, sensors that do need a direct power source are less portable.

• The third factor is the development cost, along with the maintenance cost.
By choosing a particular type of solution, vendors must plan a set of tests for
3rd-party devices, so that the integration is reliable for a long time. Moreover,
there are multiple points of failure in Cloud integrations as compared to direct
communicating devices. As a matter of fact, Cloud integration requires a 3rd-
party vendor to support its solution the entire time, whose reliability is determined
by a high Service-Level Agreement (SLA).

• A fourth factor concerns the different capabilities of devices to support. Each
type of device might require a common portion of functionalities along with
different specific features, provided by 3rd-party manufacturers. This is crucial
to handle, hence an inner semantic is opportunistically implemented. This way,
multiple capabilities owned by the IoT device are correctly registered and enabled.

• Lastly, an IoT semantic (along with a corresponding ontology) is the fifth factor
to take in consideration when realizing an IoT ecosystem. Based on a particular
semantic, the entire IoT device’s profile of can be defined in classes, attributes
and relations, which are understandable to 3rd-party integrators.

Figure 1.13: Decision-making factors to design an IoT ecosystem.

To conclude, the first objective of this thesis is to explore different real-world 3rd-
party integrations and use cases through the concepts of local and remote middleware
solutions, as defined in §1.4. Secondly, interoperability is analyzed for each solution
by taking into account different design choices used in IoT ecosystems (i.e. hardware
and software requirements for 3rd-party manufacturers, protocols, offline control and
computational power). Thirdly, this work analyzes the process of a 3rd-party integration
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in a commercial IoT ecosystem, exploring a local middleware solution with an industry-
standard protocol and a remote middleware solution based on a Cloud interaction.
Eventually, decision-making factors of the 3rd-party integration are challenged against
recent literature solutions.





Chapter 2

Candidate solutions

2.1 Commercial solutions: an overview

In recent years, smart-home ecosystems have been commercialized by several companies
working on home automation and IoT. These companies aim to integrate their devices
with value-added services for the end users. This directly involved enterprises to
develop IoT applications under realistic conditions. Furthermore, the market demand
has led to more vertical than horizontal responses. This means that companies used to
focus on improving their ecosystems rather than making their ecosystems interoperable
with competitors, due to typical monopolistic trends of large companies. However,
in recent years, article [49] explains that collaboration – i.e. an horizontal approach
– with external partners has gained success to reach new customers and client needs.
Consequently, cooperation led to a greater competitive advantage by realizing stronger
IoT ecosystems for a wider audience.

Companies focus their business model in understanding the key players to realize
an IoT ecosystem. The authors of [14] look at these players in the context of enterprise
IoT, which is a different sector from smart-home IoT. Enterprise IoT focuses on all
connected devices used for various business purposes in the enterprise setting (e.g.
industries, receptive structures, etc.). Although the cited publication does not refer to
smart-homes explicitly, the authors of [18] described similar key actors employed in a
non-specific IoT context:

• Platform providers (e.g. data platform developers, cloud service providers),
whose purpose is to design, develop and maintain the IoT platform software-wide;

• Device vendors, i.e. hardware platform providers (e.g. board manufacturers,
device manufacturers), dealing with the IoT devices for the IoT ecosystem;

• Application providers (e.g. app developers, system integrators, data analysts),
working on the device capabilities, the end-user apps and analytics for the IoT
ecosystem;

• Infrastructure providers, i.e. network technology developers (e.g. telecom
companies, data network developers), providing connectivity and protocols to
the IoT platform;

• Users and customers, who are the ones using the actual IoT solution.

19
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Figure 2.1 shows the key actors enumerated above. These players are essential
to create an IoT ecosystem capable of providing an IoT device to the end user from
the hardware part to the applications. However, most manufacturers cannot afford
internally all of these players by themselves due to high costs. Therefore, some
manufacturers can only provide IoT platforms, IoT apps or IoT devices to other
manufacturers. This way, proprietary IoT ecosystems adoption grows thanks to
company partnerships with device vendors and external players, as shown in [49].
Consequently, an IoT platform with a higher number of installations and services
attracts more customers.

Figure 2.1: Main players working for an IoT ecosystem.
Source: [18]

Nowadays, large companies have all required players to build their IoT ecosystem,
while being able to create partnerships with 3rd-party manufacturers. In fact, large
enterprises have a big influence in the tech market around the world, being the
most profitable companies at present time. As shown in [95], these companies have
experienced an enormous growth in terms of innovation and business model. Among
them, Google [74], Amazon [72], Apple [73] and Samsung [71] are the ones with an
own, fully-vertical, proprietary smart-home IoT ecosystem. Each of these companies
provides interoperability solutions for 3rd-party manufacturers in order to expand
their IoT ecosystems with 3rd-party devices and 3rd-party IoT ecosystems from minor
vendors in the global market.

In the next sections, we report in a detailed analysis the online available solutions
of Google, Amazon, Apple and Samsung to capture the different approaches for IoT
device integration. These solutions concern Smart-Home integrations for manufacturers,
aiming at interoperability of 3rd-party devices. Moreover, these platform providers are
interesting to analyze due to their commercial influence in the Smart-Home market.
Therefore, we analyze the different ways to realize an integration with the corresponding
pros and cons. For each IoT platform we discuss four characteristics:

• Integration solutions, i.e. how each vendor decided to open its IoT ecosystem to
3rd-party manufacturers. Depending on the solution, a 3rd-party manufacturer
must meet different hardware or software requirements to proceed with the
integration.

• Protocols, i.e. standard and non-standard network protocols employed in the IoT
integration, with their respective pros and cons in terms of interoperability.

• Offline control, i.e. whether an IoT device can be controlled when the Internet
connection or Cloud connectivity is absent. This helps to understand how the
architecture works in terms of services, components independence and computa-
tional units.

• Computational power of architectural components, i.e. the computational units
in which data is received, processed and transmitted (e.g. powerful gateway,
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server). We want to identify where and how data is processed across different
components of the IoT architecture.

Then, in this chapter we compare and classify each commercial solutions with the
above characteristics.

2.1.1 Google Home

Ecosystem overview. Google is a huge company headed by Alphabet. The main
commercial ambit of this company regards to internet services such as the famous Web
Search Engine (i.e. google.com), Cloud solutions (i.e. Google Cloud) and smart-home
solutions (i.e. Google Home). Around smart-home solutions, Google can be considered
a manufacturer that has been able to reach the market through entertainment systems,
i.e. Chromecast, used for game and video streaming, and smart speakers, i.e. Google
Nest, used for voice-controlled virtual assistants. Smart speakers become particularly
popular especially for home-related usage. These speakers are able to interpret user
questions and provide a response in different contexts like music, weather information
and cooking recipes. They also work as vocal user interfaces to control home appliances.
By using smart speakers a user can control IoT devices and perform task routines, as
shown in [38].

Device integrations. In order to integrate 3rd-party devices in Google Home
ecosystem, Google provides a certification program called Works with Google Home.
In this program there are three different ways to integrate new devices:

Figure 2.2: Cloud-2-Cloud integration in Google Home.
Source: modified with labels from [34]

• In Cloud-to-Cloud integration [34], Google provides its APIs for 3rd-party cloud
integration. This type of integration requires 3rd-party developers to use their
own platform that should work independently from Google. As shown in Figure
2.2, a user perform a vocal interaction with Google Assistant (1). This interaction
is translated in a text request by Google Assistant (2). Then, an intermediary
component – called Smart Home Action (3) – interprets the text request and
send it to the 3rd-party Cloud. Lastly, the targeted 3rd-party IoT device executes
the request received from the 3rd-party Cloud through the Internet (4). This
process requires the user to authorize external operations (e.g. device installation,
device control) on its 3rd-party devices from a foreign Cloud. Therefore, the
user must be registered in both IoT platforms (i.e. Google smart-home platform
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and the 3rd-party platform) and both accounts must be linked. In order to
achieve authentication, OAuth 2.0 is employed, which is an industry-standard
protocol to provide authentication flows and permissions for web applications,
machine-to-machine interactions and also IoT devices (see [82], [64]). In details,
machine-to-machine interaction provides autonomous operations to exchange
data (e.g. in OAuth, security credentials) between two or more computing entities
(e.g. web server, web applications) without human intervention.

Figure 2.3: Local Home SDK integration in Google Home.
Source: [57]

• In Local Home SDK integration [57], Google provides an SDK, i.e. a Software
Development Kit, to add 3rd-party devices with local control capabilities, without
demanding the entire action to the Cloud. This way 3rd-party devices can interact
directly with Google Home devices via intents. An intent is a simple messaging
object – i.e. data – that describes what action to perform like turning off a light
or streaming audio to a speaker. As illustrated in Figure 2.3, a user sends a
request to Google Assistant, which is then translated to an intent. The execution
is demanded to Google Home devices sending the request to 3rd-party devices
nearby in a local network. In case of local execution failure, the request can
be processed via the 3rd-party Cloud using a fallback path. This approach
helps avoid Single-point of Failure (SPoF) whenever a Google Home device is
unreachable or cannot process the request. In addition, offline execution is not
supported in this integration. This means that if the internet connection is
temporarily absent, the request will not be satisfied by the device.

Figure 2.4: Matter integration workflow in Google Home.
Source: [59]
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• In Matter1 integration [59], Google provides full compatibility with Matter,
which is an emerging industry-standard provided by the Connectivity Alliance
Standards (CSA). The official website [33] declares that Matter aims at resolving
security and interoperability issues with heterogeneous IoT devices. Nonetheless,
at the time of this writing Matter is not available to the market. As shown
in Figure 2.4, using Matter, an intent from a user is produced and executed
through a Matter-compatible Hub connected to nearby 3rd-party devices. This
Hub receives the request from the 3rd-party Cloud, that must be linked with
the Google Cloud sending the request. The Hub is entirely responsible for the
execution request, thus lacking a different execution path to use as a fallback in
case of failure. Moreover, this approach does not provide any offline control of
an IoT device, as an Internet connection is required.

Discussion. These integrations provide multiple approaches for 3rd-party integration
in the Google Home ecosystem. Speaking of integration solutions, the Cloud-to-
Cloud solution takes advantage of 3rd-party Cloud to handle execution request, while
the Local Home SDK exploits Google Home devices to send execution requests to
nearby 3rd-party devices. On the other hand, Matter’s integration requires a 3rd-
party Hub that must be Matter-enabled. In addition, the 3rd-party device shall be
compatible with Matter and the Hub. Lastly, using Matter the entire interaction can
be performed through the 3rd-party Cloud. In all integrations, offline control of IoT
devices is not supported, which leads to a huge dependency to Cloud-related services
for computational units. As a matter of fact, Google Home takes advantage of the
Cloud computing power for the Cloud-to-Cloud integration, while Local Home SDK
and Matter integrations delegate parts of the computation via an intermediary. This
intermediary works as a powerful gateway, as previously described in §1.3.2, which can
be a Google Home device or a Matter-enabled Hub. As a result, Local SDK integration
requires the use of an extra component – similar to a driver – that is installed inside
Google devices, while Matter integration requires a protocol-compliant IoT device
without extra components.

2.1.2 Amazon Alexa
Ecosystem overview. Amazon is a huge enterprise covering several commercial
sectors. It started as an e-commerce company in 1994, and today has expanded its
business to cloud computing, digital streaming, and Artificial Intelligence applications.
Among these sectors, smart-homes and smart-speakers reached a high market share
in the US and worldwide, as shown in [28] and [63]. The first Amazon solution with
smart-home was introduced with Alexa which is a virtual assistant embedded inside
Amazon smart-speakers. Similarly to Google Home assistant, Alexa enables 3rd-party
IoT devices to be controlled in the Amazon smart-home ecosystem via voice control and
mobile app. The core processing component of Alexa are skills. An Alexa skill is a set
of tasks or actions that are executed by various executors all in the Amazon ecosystem.
In other words, skills may help users to perform everyday tasks naturally through voice-
recognition. From a developer viewpoint, a skill is a set of serverless lambda functions.
In programming languages, a lambda function (also called anonymous function) is a
function definition that is not bound to an identifier. Moreover, a function is called
serverless because it is dynamically executed by the cloud provider through on-demand
resource allocation. Consequently, in the Function-as-a-Service (FaaS) context, an

1Matter is formerly known as project CHIP, Connected Home over IP
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application can be realized through the composition of multiple serverless lambda
functions, whose purpose is to handle events passed as arguments during function
invocations. Furthermore, FaaS is also provided by Amazon Web Services (AWS) – i.e.
Amazon Cloud platform – via AWS Lambda, that hosts Alexa Skills.

Figure 2.5: Amazon Alexa skill overview interacting with the Alexa service.
Source: amazon.com

Device integrations. In order to integrate 3rd-party devices in Amazon smart-home
ecosystem, Alexa provides a certification program called Works with Alexa (WWA).
As shown in [67], this program allows developers to integrate their IoT devices in four
different approaches. However, one approach is not considered in this analysis because
it explains how to create an Alexa built-in 3rd-party client, which concerns only a
subset of IoT devices integration – i.e. smart-speakers. Therefore, three integration
approaches are analyzed.

Figure 2.6: Amazon Alexa integration via Hardware / SDK module.
Source: [67]

• In hardware or SDK module integration, a 3rd-party manufacturer shall
use an ACK – i.e. Alexa Connect Kit –, which includes a required SDK library
and an optional hardware module to directly integrate 3rd-party IoT devices
in the Alexa ecosystem. The hardware solution is suitable for newer devices,
while existing devices requires a firmware update to add the required SDK, if
compatible. As shown in Figure 2.6, the IoT device is developed and maintained
by the 3rd-party manufacturer, who is responsible for the entire device life-cycle.
On the other hand, the entire IoT platform is developed and maintained by
Amazon. This does not allow 3rd-party manufacturers to have control on their
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device with their own IoT infrastructure, hence firmware update management,
metrics and logs are operated by Amazon.

Figure 2.7: Amazon Alexa integration via Cloud-to-Cloud.
Source: [67]

• In Cloud-to-Cloud integration (called Smart Home Skills), a 3rd-party manu-
facturer uses its own IoT infrastructure connected to the Alexa IoT platform.
This integration requires an Alexa Skill interacting with Alexa Smart Home
APIs and a 3rd-party Cloud. Therefore, the 3rd-party manufacturer must use its
Cloud to receive actions and send proactive device updates. As shown in Figure
2.7, the 3rd-party IoT infrastructure is completely developed and maintained
by the device maker. Consequently, the manufacturer has more control on its
devices, in spite of maintaining its own architecture, which requires the Alexa
Skill to be always up-to-date with the 3rd-party IoT ecosystem modifications.

Figure 2.8: Amazon Alexa integration via Local Connection.
Source: [67]

• In Local integration, a 3rd-party device is integrated by using a local connection
via a standard wireless protocol. In this case, Alexa supports Bluetooth Low-
Energy (BLE), ZigBee and Matter to provide a direct connection with an Alexa
smart-speaker. However, this integration requires an Alexa smart-speaker enabled
to act as a powerful gateway, thus controlling 3rd-party IoT devices via local
connections. As illustrated in Figure 2.8, this approach is more Alexa-independent
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than the hardware or SDK module integration. In fact, the IoT device must use
an industry-standard protocol (e.g. ZigBee, BLE) to work with an Alexa-enabled
device (i.e. powerful gateways). In this case, we note that the IoT device can
potentially work with other IoT ecosystems supporting that protocol. Moreover,
in Local integration, 3rd-party manufacturers are only responsible for their IoT
devices, which work without requiring an Alexa Skill. Lastly, Alexa smart-home
provides offline control of IoT devices, meaning that in case of unreachable Cloud
services or absence of Internet connection, 3rd-party IoT devices keep working
under Alexa control.

Discussion. Regarding integration solutions, Cloud-to-Cloud integration leverages the
3rd-party Cloud, while local connection and hardware / SDK solutions can work directly
with the Alexa IoT ecosystem without a 3rd-party Cloud. However, the hardware /
SDK solution requires a strong joint with the Alexa ecosystem, while local connection
requires a standard Alexa-supported protocol to be adopted. Since local connection
requires an industry-standard, with this solution a manufacturer can be independent
from the Alexa ecosystem. As a result, if the manufacturer intention is to create a
3rd-party device that is interoperable across multiple IoT ecosystems, local connection
and Cloud-to-Cloud solutions can be appropriate. Speaking of offline control, local
connection exploits Alexa-enabled devices to work in absence of Internet connection
or cloud services. This is important to provide end users control capabilities in such
situations. Moreover, the computing power is demanded to powerful gateways working
as independent intermediaries for 3rd-party IoT devices. Conversely, Cloud-to-Cloud
solution does not support offline control with the Alexa ecosystem and the execution
request are processed via an Alexa Skill, acting as a middleware for Alexa Smart Home
APIs and a 3rd-party Cloud.

2.1.3 Apple
Ecosystem overview. Apple is a global company specialized in consumer electronics,
software and online services. A report of July 2022 [95] shows that Apple is the largest
technology company by market value, as opposed to Alphabet and Amazon. Apple
provides many consumer electronics solutions, especially in the mobile market. In
the smart-home sector, Apple owns an emerging IoT ecosystem, made of 3rd-party
accessories and devices. As discussed in [30], the entire power of Apple devices resides
in the Apple ecosystem, which allows customers to inter-operate easily across Apple
devices. Consequently, Apple is highly selective when it comes to 3rd-party manufac-
turers. Smart-homes are managed through their Apple Home application (see [73])
where users can control IoT devices from different vendors.

Device integration. Apple uses a framework called Homekit to provide 3rd-party de-
vice integration. For commercial purposes, 3rd-party manufacturers must join the MFi
program to develop and test their integration. This program gives the manufacturer
access to closed documentation regarding the HomeKit Accessory Protocol (HAP)
specification. This documentation explains the interaction with Apple ecosystem and
3rd-party integrators. Since Apple policy is not permissive (see [84]), in this thesis
device integration will be partially discussed from the available online resources. As
shown in [37], Apple supports two main approaches:

• In the IP / BLE integration, a 3rd-party manufacturer must use an IP-based
family of protocols (e.g. WI-FI) or Bluetooth Low-Energy. 3rd-party devices
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shall use HAP to interact with Homekit framework. As discussed in [40] and [46],
Apple Homekit exploits an optional HAP-enabled bridge (or Home Hub) that
works as a powerful gateway to control multiple HAP-enabled 3rd-party devices,
even remotely through the Internet. However, this bridge is not strictly required,
because HAP can also work directly with local Apple devices. These Apple
devices can be smartphones, tablets and computers providing a user interface
(e.g. Apple Home app) for the IoT ecosystem control. Therefore, as shown in
Figure 2.9, HAP 3rd-party accessories are able to interact directly with Apple
devices (i.e. blue connection lines in the figure) or through a home hub route
that connects through the Internet to iCloud, i.e. the Apple Cloud (i.e. green
connection lines in the figure).

Figure 2.9: High level interaction of Apple Homekit connecting multiple devices.
Source: [40]

• At the time of this writing, Matter integration is not fully supported by Apple
but it is present inside Apple developers documentation. As shown in [37], [27]
and Figure 2.10, this approach uses Matter along with HAP in the Homekit
framework. Therefore, a 3rd-party manufacturer using Matter as a standard
protocol is eligible to add its IoT device to the Apple ecosystem. As a result, end
users shall use the same interfaces of Apple Home used in the IP / BLE approach
(i.e. Apple Home app with Apple devices) to interact with 3rd-party IoT devices.

Figure 2.10: Apple Homekit architecture view for Matter support.
Source: recreated from [27]
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Discussion. Apple integration solutions do not involve 3rd-party Cloud integrations.
This requires the 3rd-party manufacturers to completely integrate their IoT device
through HAP, which is a custom protocol that works on top of IP / BLE. Consequently,
this approach does not require 3rd-party vendors to develop or maintain their own
IoT platform in order to manage their IoT devices. Conversely, HAP requires a
deep integration in terms of 3rd-party device compatibility. The use of Matter as
an alternative approach gives 3rd-party manufacturers more independence from the
Apple ecosystem, even though at present times its support is not completely available.
Speaking of offline control, Apple IP / BLE approach gives end-users the option to
control their devices even during absence of Internet connection. On the other hand,
Matter approach is not currently documented by Apple. However, Apple integration
solutions show a strong independence with Cloud-related services, because no Cloud-
to-Cloud approach is available for 3rd-party vendors. Regarding computational power,
3rd-party IoT devices are handled with a direct connection through smartphones,
tablets or powerful gateways. Internet connectivity is only used when a gateway is
employed to provide remote control.

2.1.4 SmartThings

Ecosystem overview. Samsung is a multinational conglomerate specialized in manu-
facturing electronics component such as semiconductors, camera modules and displays.
It also provides consumer electronics and services in different fields (e.g. smartphones,
tablets and TVs). In this conglomerate of companies, SmartThings Inc. is a subsidiary
company working on home automation and IoT technologies. This company has
built an entire IoT ecosystem which integrates with Samsung products and 3rd-party
devices. An article from [94] shows that SmartThings IoT ecosystem has over 60
million active users in 2020, whose increase was equal to 70% from 2019. As a result,
this company concentrated on 3rd-party device integration, gaining success in terms of
interoperability. As opposed to Amazon, Apple and Google, SmartThings does not
use its own virtual assistant in smart-homes. Instead, SmartThings direction is to
make virtual assistants interoperable with their own IoT ecosystem through future
Matter integration. Therefore, the IoT ecosystem has several devices from different
manufacturers that are controlled via a mobile application for end users.

Device integration. In order to integrate 3rd-party devices in SmartThings IoT
ecosystem, the company provides a certification program for 3rd-party manufacturers
called Works with SmartThings (WWST). In this program there are four ways to
integrate new devices, that are illustrated in Figure 2.11.

• In Cloud-connected device integration [42], 3rd-party manufacturers use their
own Cloud to handle tasks and actions from the SmartThings Cloud. This
approach requires 3rd-party devices to autonomously connect to the Internet,
receive commands and update their status with their Cloud. As shown in Figure
2.11, the SmartThings Cloud interacts with the 3rd-party Cloud through OAuth
2.0, whose protocol has been discussed in §2.1.1. Then, the 3rd-party Cloud
exchange data with the Cloud Connected Device. Consequently, if the Internet
connection is absent, the 3rd-party device cannot be controlled. In order to
realize this solution, a 3rd-party manufacturer shall provide an intermediary (e.g.
a serverless function) that is capable in exchanging data between the two Cloud
infrastructures.
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• In Direct-connected device integration [43], 3rd-party manufacturers use
SmartThings Cloud directly without using a 3rd-party IoT platform. This
solution enables 3rd-party devices to directly connect through the Internet and
dialogue with the SmartThings Cloud, but it requires a custom firmware that
uses a compatible SmartThings protocol, such as MQTT (i.e. MQ Telemetry
Transport). MQTT is a machine-to-machine network protocol through which
messages are exchanged through the one sending the message to a queue (called
publisher) and the one reading the message (called subscriber) from the queue.
Messages are organized in queues called topics to which multiple publishers and
subscribers can hook to exchange data.

Figure 2.11: SmartThings solutions overview for Cloud-connected, Device-connected,
Mobile-connected and Hub-connected integrations.

Source: [31]

• In Mobile-connected device integration [45], a 3rd-party device requires an
intermediary that connects to the SmartThings platform through the Internet.
This intermediary is a mobile device – such as a smartphone – with the Smart-
Things app installed that connects directly to the IoT device. This solution uses
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the Bluetooth protocol to accomplish 3rd-party integration. Some examples of
targeted products for this solution can be wearables or headphones that can also
be used outside the smart-home context.

• In Hub-connected device integration [44], a 3rd-party manufacturer can add its
IoT device to the SmartThings platform by using an industry-standard network
protocol such as ZigBee and Z-Wave. Moreover, this solution also allows LAN
connection to be used through non-standard low-level socket connection provided
via TCP / UDP. In addition, even Matter will be supported in the future, as
reported in [81]. In order to provide such compatibility, 3rd-party IoT devices are
controlled through a SmartThings Hub that acts as a powerful gateway. This Hub
uses drivers as intermediaries to understand tasks and actions from data received
from the network protocol. Then, data is transmitted to the SmartThings Cloud
through the Internet. The entire interaction is illustrated in Figure 2.11.

Discussion. Starting with integration solutions, SmartThings provides several different
ways to integrate 3rd-party devices in its IoT ecosystem. A 3rd-party manufacturer can
choose between using its Cloud infrastructure (Cloud connected solution) or not, but it
can also decide to integrate a Mobile-dependent device (Mobile connected solution) or
a Mobile-independent device (Direct connected solution). Lastly, the 3rd-party vendor
can also choose an industry standard protocol (e.g. ZigBee, Z-wave) that works with a
powerful gateway owned by SmartThings, along with other home devices. Speaking
of offline control, each solution requires the 3rd-party device to deal with an Internet
connection in order to provide these services. However, the use of drivers in the
powerful gateway allows the devices to be partially controlled offline only for routines
and automated tasks. This means that an IoT device can be configured to trigger a
pre-defined action with other IoT devices belonging to the SmartThings ecosystem
(e.g. if a user turn on a light, another light turns on), but the user cannot use an
interface that is directly connected to the powerful gateway to control devices offline.
Regarding computational power, all solutions – besides Hub-connected integration –
use the SmartThings Cloud to process requests. In the Mobile-connected solution, the
mobile device acts as a powerful gateway demanding part of the operations to the
Cloud, as also happens in the Hub-connected solution.

2.2 Drawing a taxonomy of solutions
As discussed in §2.1, Google, Amazon, Apple and Samsung brought several possibilities
in terms of 3rd-party IoT device integration. We identified 3 macro-categories in which
each integration solution can be classified.

• Cloud-to-Cloud integration. This solution requires a machine-to-machine
interaction between the IoT ecosystem of the platform provider and the IoT
ecosystem of the device vendor. End users can interact with the applications
provided by the platform provider or the device vendor. The intermediary
between the IoT ecosystems shall be a software component (e.g. a serverless
function) that is able to extract information from different data formats and
semantics. Offline control is not supported in this integration.

• Gateway-connected integration. This solution uses a gateway as an interme-
diary for IoT devices communication. This gateway is also a powerful gateway
that can process part of the requests through the use of drivers. These drivers
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are software or firmware components that are capable in interpreting commands
from a network protocol and translate them into another protocol format. In
addition, gateway-based solutions can support offline control.

• Direct device integration. This solution provides a direct connection with the
3rd-party IoT device to be controlled via a mobile device or the Cloud platform.
The IoT device can be connected directly to a mobile device that end users can
interface to using a mobile app. Otherwise the IoT device can establish a direct
connection with the IoT Cloud platform through a network gateway with no
data-processing capability (e.g. WI-FI router). The IoT device integration can
be accomplished by using an SDK and/or an hardware component supplied by
the infrastructure provider. Offline control can be supported in this integration.

Each commercial solution has been classified in Table 2.1. Samsung and Amazon
offers the higher support among the three solutions. Moreover, Gateway-connected
integration is supported across all IoT platforms. Another interesting fact is the com-
pany approach to support cloud-based solution. Apple focuses on gateway-connected
and direct device integration, while Google focuses on the Cloud-powered integrations.

Google Amazon Apple Samsung
Cloud-to-Cloud integration ✓ ✓ - ✓
Gateway-connected integration ✓ ✓ ✓ ✓
Direct device integration - ✓2 ✓ ✓

Table 2.1: Commercial IoT ecosystems supporting the proposed classification of
integration solutions.

2.3 Comparison of IoT integration solutions
In §2.2, we classify commercial IoT solutions in three categories. In the following
section, each category is discussed across manufacturers to understand integration
solutions.

2.3.1 Cloud-to-Cloud integration
Table 2.1 shows that Cloud-to-Cloud integration is supported by Google, Amazon
and Samsung. In this integration, a set of APIs owned by platform providers and/or
3rd-party manufacturers is exposed to provide authentication and services. In details,
authentication is provided with the standard-industry security protocol called OAuth
2.0 – already mentioned in §2.1.1 –, while services are accessible through resource-
centric APIs. These APIs focus on serving a specific resource, that can be manipulated
by a client through basic CRUD operations (i.e. Create, Read, Update, Delete). As
a result, in all three alternatives OAuth 2.0 must be employed to provide what it’s
called account linking. This operation is accomplished by end-users to link the account
from an IoT platform to a 3rd-party IoT platform. This process requires the user
to have an account on both IoT ecosystems. Moreover, it is required to perform
machine-to-machine communication at application level. However, in order to make
the APIs dialogue with each other, an intermediary is required in each solution.

2In August 2022 direct device integration solution from Amazon is restricted to the US market
only. See [68] for more information.
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• Google employs a Smart Home Action as an intermediary, which is a component
written in Node.JS or Java. This component is responsible to fulfill user intents.
In details, a user perform an action (e.g. vocally, through a smart-speaker) that
is represented through data. Then, the Smart Home Action receives data and
adapts the data format for the 3rd-party IoT ecosystem. Lastly, the Smart Home
Action sends data to the 3rd-party IoT ecosystem using APIs. This process can
also work in reverse (that is, 3rd-party IoT platform - Smart Home Action - IoT
platform), whenever the interaction is triggered from the IoT device (e.g. a user
turns on a 3rd-party light by pressing the physical switch).

• Amazon uses an Alexa skill as an intermediary, which is a component written as
a Lambda function (i.e. a serverless function) in different programming languages
(e.g. Node, Python, etc.). When the user invokes an action (e.g. though an Alexa
smart-speaker), the Lambda function is responsible in adapting data with the
3rd-party data format; then, data is transmitted to the 3rd-party Cloud using
3rd-party APIs, similarly to Google Smart Home Action.

• SmartThings exploits a Cloud Connector as an intermediary, which works as
an HTTP webhook or a Lambda function, written in different programming
languages. An HTTP webhook is a web application designed with custom callback
APIs, that is employed by the 3rd-party manufacturer to receive data from the
IoT platform. This component handles the callback invoked. Then, the business-
logic inside the webhook adapts data in the 3rd-party data format. Lastly, the
webhook passes data to the 3rd-party Cloud, either via 3rd-party APIs or directly
– in this last case, the webhook shall be embedded in the 3rd-party APIs.

Figure 2.12: Cloud-to-Cloud interaction view between two APIs (A and B) requesting
a resource through a remote middleware.

In conclusion, each solution uses the same approach to solve the problem, which is the
use of an intermediary software component at an high architecture level. As discussed in
§1.4 and §1.3.1, this intermediary can be identified as a remote middleware because
the Cloud interaction happens between the application level of two IoT ecosystems.
Figure 2.12 shows the interaction between two APIs in which a remote middleware
extracts information from data and adapts the data format to provide data exchange
between the two IoT ecosystems (i.e. A and B).
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2.3.2 Gateway-connected integration
From Table 2.1, all manufacturers support this solution. A common point across these
manufacturers is the powerful gateway (in §2.1.3 and §2.1.4 called Hub), that connects
to the Internet and works as an intermediary to handle the connection with multiple
IoT devices. Inside the gateway, entities called drivers allow 3rd-party IoT devices to
be recognized inside the network. Moreover, these drivers cover several basic operations
such as IoT device installation, control and disconnection. Nevertheless, the way this
solution is employed to 3rd-party manufacturers is a bit different according to gateway
design choices.

• Google employs a Local Fulfillment [56] to provide local interaction through
Google Home devices and nearby 3rd-party IoT devices. This requires 3rd-party
manufacturers to develop this Local Fulfillment through the Local Home SDK. In
this case, Google Home devices act as powerful gateways because they host Local
Fulfillment scripts. Therefore, these scripts act as drivers. However, this solution
exploits an Internet connection used by Google Home devices to receive user
intents, that are processed through Local Fulfilment scripts. This means that it
is not possible to control 3rd-party IoT device when the Internet connection is
absent. Lastly, the supported interfaces from Google for this approach are TCP
/ UDP sockets, HTTP and Bluetooth Low-Energy.

• Amazon uses a Local connection with an Alexa-enabled device that acts as a
gateway. This solution requires 3rd-party device to implement an industry-
standard protocol to recognize the device capabilities and automatically control
the device in-app. As mentioned in §2.1.2, the protocols supported are Bluetooth
Low-Energy, ZigBee and Matter. In this case, no explicit driver is used inside
the gateway because these protocols automatically expose device capabilities
through a discovery service mechanism (i.e. device services are exposed by the
standard and accessible by the gateway). However, this solution also requires
3rd-party manufacturers to add additional specifications in their IoT device
firmware, according to Works with Alexa program. For example, in [48] 3rd-party
devices do need to add a mandatory component (called Work with all Hubs)
in ZigBee-enabled devices. Therefore, even though drivers are not explicitly
used, extra requirements in the industry protocol are required. This might cause
compatibility issues when it comes to multiple IoT ecosystem integration for 3rd-
party manufacturers. For example, if the protocol requires an extra functionality
that is not completely covered by the standard, this may cause instability in
certain IoT ecosystems that do not support it.

• Apple takes advantage of HomeKit Accessory Protocol (HAP), which works
with an Home Hub to manage 3rd-party IoT devices. With respect to the
competitors, Apple approach is the most unconventional because it requires
3rd-party manufacturers to use the HAP. This protocol works on top of IP-based
and Bluetooth Low-Energy, which must be adapted in 3rd-party devices. Again,
this may cause compatibility issues when a 3rd-party manufacturer wants to
add support to multiple IoT ecosystems. However, as shown in §2.1.3, with the
introduction of Matter the Home Hub is be able to use Matter independently
from the HAP framework.

• Samsung employs an Edge Driver to handle 3rd-party devices inside a network.
Edge drivers are installed inside a SmartThings Hub, that requires 3rd-party
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devices to use an industry-standard protocol to interact with. The supported
protocols are ZigBee, Z-wave, LAN-based (i.e. UDP/TCP sockets) and Matter3.
With respect to Amazon approach, Samsung solution allows 3rd-party devices
to follow the protocol according to the standard without extra requirements
in terms of non-standard compliant components. However, some behaviors of
IoT devices can be adjusted and controlled through an edge driver. This driver
acts similarly to Google Local Fulfillment, but in addition the edge driver can
execute even if the Internet connection is absent. As a result, this approach gives
access to custom functionalities at the cost of an extra component that must be
developed and maintained.

Figure 2.13: Gateway-connected interaction view with a powerful gateway equipped
with a local middleware.

In the end, each solution takes advantage of a software or firmware component that
works as an intermediary inside a powerful gateway. In the Amazon solution this
component is not explicitly present because the interaction from an industry-standard
protocol is interpreted internally in the Alexa-enabled devices. Therefore, in all
solutions this intermediary can be identified as a local middleware, because it works
inside the powerful gateway from the network layer. As a matter of fact, the local
middleware is able to receive data from a common network protocol (e.g. ZigBee,
BLE). Then, data is interpreted and adapted in a new data format understandable
by the processing layer. Figure 2.13 represents the interaction described above with
two IoT devices from vendor A and vendor B. In this figure, the local middleware is
employed before reaching the server to provide data interpretation.

2.3.3 Direct device integration

Table 2.1 shows that only Amazon, Apple and Samsung support this integration
solution. This solution uses a direct connection to the end-user IoT interface or the
IoT Cloud platform without an intermediary device. As a result, all three integrations
shall adapt the 3rd-party IoT device firmware in order to make the integration working.
This solution is accomplished in different ways according to the manufacturer.

3In August 2022, Matter documentation is not available. However, the support will be added in
the future, as reported in [81]
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• Amazon uses the Alexa Connect Kit (ACK) that includes an Hardware module
(optional) and an SDK library to integrate the 3rd-party device. This approach
allows the device to be directly connected to ACK managed services, enabling the
device to be controlled by the Alexa IoT ecosystem. This connection is established
with the Cloud through an Internet connection using a WI-FI network. This
3rd-party device must be developed, tested and manufactured entirely by the
3rd-party manufacturers according to Amazon requirements, as shown in [41].

• Apple takes advantage of HomeKit Accessory Protocol (HAP) to integrate 3rd-
party devices directly, besides the gateway-connected integration. This solution
requires 3rd-party devices to be recognized directly through an Apple device
using HAP (e.g. Apple smartphones, tablets) and an IP-based or BLE protocol.
As a result, this protocol must be implemented in the 3rd-party device firmware
to properly work with the Apple ecosystem.

• Samsung exploits two integration variants: a mobile-connected variant to connect
3rd-party devices through Bluetooth Low-Energy and a direct-connected variant
in which the 3rd-party device uses a WI-FI network to connect to the Cloud
platform. The former variant (i.e. mobile-connected) requires an SDK provided
by SmartThings that must be implemented in the 3rd-party device firmware.
The latter variant (i.e. direct-connected) requires the 3rd-party device to use the
MQTT protocol to exchange messages with the SmartThings ecosystem in Cloud.
The MQTT protocol is provided inside a different SDK, equally maintained by
SmartThings. In both variants, an ad-hoc firmware called device app must be
developed to accomplish the 3rd-party integration. As shown in [36], the device
app is installed inside the 3rd-party device to provide device functionalities and
interpret commands from the SmartThings IoT platform.

Figure 2.14: Direct device interaction view with either a server or a mobile device.

In these solutions, the intermediary between the IoT ecosystem and the 3rd-party
device is not explicitly present, as opposed to Cloud-to-Cloud and Gateway-connected
solutions. However, this component is managed by the IoT platform providers in a
different form.

• Alexa uses the ACK SDK module to translate 3rd-party device behaviors for the
Alexa ecosystem. Therefore, since the component works on top of the perception
and network layers, this intermediary is a local middleware.

• In the Apple ecosystem, HAP interactions are handled through the HomeKit
framework. This framework works on top of an Apple device connected in the
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same network. Hence, the intermediary is a local middleware, because it is placed
inside the device between the processing layer (e.g. mobile app business-logic,
powerful gateway) and the network layer.

• In the SmartThings ecosystem, the intermediary is the device app (i.e. the
firmware) hosted inside the device. Therefore, this intermediary is a local mid-
dleware, because it works on top of the perception and network layers.

In conclusion, direct device integration in these three solutions takes advantage of a
local middleware. Figure 2.14 shows the mobile device approach and the direct
connection with the server. Moreover, the connection with the server can happen
through the Internet, if the server is only available remotely. In the mobile approach,
instead, the mobile network (i.e. the network used by a mobile device to connect to
the IoT device) is used in order to forward data to the business-logic of an App. This
app is then showed to the user through a front-end interface to provide IoT device
control options, belonging to the application layer.

2.4 Protocols in 3rd-party IoT integrations
In this section, we present a summary of industry-standard protocols discussed in
the above sections. Then, we give an overview of two protocols used respectively
in a Gateway-connected and Cloud-to-Cloud solutions. This overview is required to
understand the workflow of real implementation use cases described in the next chapter.

2.4.1 Summarizing industry-standard protocols
Industry-standard protocols have been used across different IoT integration solutions,
as discussed in §2.3. These protocols are employed in 3rd-party IoT devices to provide
functionalities and capabilities. However, sometimes standard protocols lack additional
features that a platform provider might require for the integration. This generates
an issue in terms of interoperability because standard protocols implemented in IoT
devices must be modified to satisfy platform provider requirements. For example, in
§2.3.2 Amazon solution requires an extra component of the ZigBee protocol to be
added as a requirement. Another example is Apple, whose integration solution employs
a custom protocol that works on top of the standard ones. This way, Apple’s HAP
is imposed for 3rd-party device integrations, thus requiring higher development and
maintenance costs for 3rd-party manufacturers.

Cloud-to-Cloud Gateway-connected Direct
Google HTTP TCP/UDP, BLE, Matter -
Amazon HTTP BLE, ZigBee, Matter TCP/UDP
Apple - HAP, Matter HAP
Samsung HTTP TCP/UDP, ZigBee, Z-wave4 BLE, MQTT

Table 2.2: Summary of the network protocols used in commercial IoT solutions.

4As reported in [81], Matter will be supported in SmartThings gateway-connected integrations. It
is not inside this table because there is no official documentation yet.
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Table 2.2 summarizes all protocols from the four IoT platform providers. HTTP
is the main protocol used for Cloud-to-Cloud solutions. Moreover, Matter plays a
key role in all gateway-connected integrations. However, this technology is not yet
fully supported by all vendors yet. Therefore, ZigBee, BLE and TCP/UDP are the
most common alternatives in gateway-connected integrations. Lastly, direct device
integration protocols are different for each implementation.

From this table, it is important to highlight that Matter is commonly adopted
by all vendors for Gateway-connected solution – including Samsung in the future.
Furthermore, as shown in [33], Google, Amazon, Samsung and Apple took part in a
common alliance called CSA IoT to overcome competition in network protocols. This
alliance aims at creating Matter : an interoperable protocol for gateway-connected
integrations. Before Matter, CSA created ZigBee, which is a protocol specifically
designed for low-powered devices. It gained popularity in recent years in the smart-
home domain due to its feature set that covers multiple device use cases and behaviors.
This protocol is employed in smart-homes to bring a common standard for gateway-
connected integrations.

Nevertheless, in Cloud-to-Cloud solutions no real progress has been made to create
a common standard. As a matter of fact, APIs on top HTTP are used across IoT
platform providers. Consequently, these APIs are completely customized according
to vendor needs. Nonetheless, there is an emerging industry-standard to create 3rd-
party APIs in IoT ecosystems. This standard is provided by the KNX Association
and it is called KNX IoT 3rd-party API [52]. The KNX Association provides
services and components to build an entire IoT infrastructure for manufacturers, from
the hardware parts to the software. In this case, KNX IoT 3rd-party API – from
now on referred as KNX IoT 5 – is a software component that allows manufacturers
to develop and maintain 3rd-party APIs following an industry-standard protocol.
This way, a remote middleware between IoT platforms can be easily re-used across
different 3rd-party manufacturers adopting this standard. As a matter of fact, the
data format translation would not be required because the data format would be the
same. However, the middleware can be used to insert minor adjustments according to
expected manufacturers customization.

ZigBee and KNX IoT are two protocols belonging to two different integration
solutions, showing two industry-standards for Gateway-connected and Cloud-to-Cloud
solutions. Consequently, in this work we analyze these two protocols to investigate
main characteristics, data-models and performance (e.g. energy consumption, security).
Moreover, as shown in Table 2.2, we consider ZigBee and KNX IoT because the
former protocol (ZigBee) is adopted in Amazon and Samsung solutions, while the
latter protocol (KNX IoT) is an alternative to custom (HTTP) APIs developed by IoT
platform providers.

Furthermore, we analyze in-depth two real implementations from these two standards
in the next chapter. One gateway-connected solution is developed for the SmartThings
IoT platform, while a Cloud-to-Cloud solution is created for a minor manufacturer.

2.4.2 ZigBee, a wireless protocol for IoT devices

Overview. ZigBee is an industry-standard network protocol used by Amazon and
SmartThings in their IoT ecosystems, as discussed in §2.4. This network protocol is
used to create a Wireless Personal Area Network (WPAN). In details, WPANs are

5We note that KNX IoT includes multiple specifications used for different purposes. In this work,
we use KNX IoT as an abbreviation of the KNX IoT 3rd-party API specification.
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networks employed for short-distance low-powered wireless devices. A commonly used
WPAN in smartphones is Bluetooth, which works for multiple purposes such as file
transfer and audio streaming. ZigBee pertains to WPANs being a low-rate and low-
powered network capable to provide interconnection across devices. ZigBee technical
specifications are shown in Table 2.3. Moreover, ZigBee has three core characteristics:

• fail-safe, i.e. if a node (namely a network-connected device) fails, then the
network keeps working with the existing nodes;

• self-healing, i.e. the network autonomously replace a node from failure with
another node, preserving the previous node role (e.g. if the node that controls
network traffic fails, another nearby node takes that role);

• scalable, i.e. the network can be expanded or reduced based on the number of
devices connected.

These features are important in an IoT context because ZigBee devices consume
less power than Wi-Fi or Bluetooth devices, as shown in [15]. Moreover, with mesh
networking the ZigBee protocol avoids the use of a central entity to which nodes must
be connected to stay in the network and exchange messages.

Frequency band 868/915 MHz; 2.4 GHz
Max N. of nodes 65000 per network
Power consumption 1 mW
Nominal range 10-100 meters
Max signal rate 250 kb/s

Table 2.3: ZigBee specifications reported in [4] and [15].

Network topology. ZigBee is capable to create a mesh network with the connected
devices. A mesh network is a particular network topology where nodes are directly and
non-hierarchically connected with as many nearby nodes as possible. In this type of
network, cooperation is essential to exchange messages through message multi-hopping.
With message multi-hopping, a node can use other nodes as relays to reach a distant
node. For example, since node A cannot directly connect to node B to send a message,
node A exploits other nodes in the path.

In PANs, each node has a specific role. There are three main roles, that are also
used in the ZigBee specification:

• Full Function Device (or ZigBee Router), which is a device with a basic
communication model used to send and receive messages from other nodes.

• PAN Coordinator (or ZigBee Coordinator), that is a special type of Full
Function Device, whose purpose is to coordinate message exchange across the
entire network. Moreover, it is unique inside the network and it is responsible to
create the network. When a PAN Coordinator fails, the node is replaced with a
Full Function Device inside the network.

• Reduced Function Device (or ZigBee End-Device), which is a simpler device
that requires a Pan Coordinator or a Full Function Device to send and/or receive
messages inside the network.
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As shown in Figure 2.15 – which is based on [4] –, in the ZigBee Mesh network a
ZigBee End-Device is connected to a ZigBee Router or a ZigBee Coordinator. Moreover,
ZigBee Routers can connect to nearby devices to provide multi-path message exchange
for other nodes.

Apart from the mesh network, ZigBee can also create two other network topologies:

• Star, where nodes are ZigBee End-Devices only attached to a ZigBee Coordinator.

• Cluster-Tree, which is an extended Star network where ZigBee Routers are
used as clusters to provide ZigBee End-Device connectivity.

Figure 2.15: Topology views of ZigBee Star, ZigBee Cluster-Tree and ZigBee Mesh.

Architecture overview. As shown in report [4] and Figure 2.16, ZigBee is divided
in a four layer-architecture.

• The Physical layer, which is defined by the 802.15.4 standard, is the lowest
layer of architecture. This layer is the closest to hardware and it is responsible
to control message communication with the ZigBee hardware. For example, it
handles hardware initialization, channel selection and link quality analysis with
other nodes.

• The MAC layer is placed above the physical layer and it is defined by the
802.15.4 standard. This layer is responsible to receive data from the physical
layer, perform association and dissociation functions (e.g. adding the device
inside the network) and also synchronize devices through beacon signals (e.g.
using a beacon it is possible determine when the device is able to send or receive
messages).

• The Network layer is defined by the ZigBee Alliance6 and works as an interface
for the MAC layer. This layer creates the network and handles routing and
address allocation through routing tables. Routing tables are used to recreate
paths of the connected nodes in the network.

6From 2021, the ZigBee Alliance has been re-branded in Connectivity Standards Alliance (CSA).
See [83] for more information.
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• The Application layer is placed above the Network layer and it is used as a
host for application objects. These application objects are mapped into three
sub-layers.

– The Application Framework (AF) contains manufacturer-defined application
objects that are served as capabilities of the ZigBee device. These capabilities
are accessible through a total of 240 distinctive service end-point. A service
endpoint implements a single function mapped to an application profile. An
application profile is defined by the ZigBee Alliance and defines message
formats and a list of supported clusters. A cluster is a set of capabilities
that the device supports (e.g. the On/Off cluster provides On/Off switch
attributes and commands to the device). These clusters are also defined by
the ZigBee Alliance in the ZigBee Cluster Library (ZCL).

– The ZigBee Device Object (ZDO) addresses device discovery (i.e. a ZigBee
device detects and identifies another ZigBee device inside the network),
service discovery (i.e. a foreign ZigBee device retrieves the clusters and
capabilities of another ZigBee device) and binding (i.e. a hook mechanism
to provide a client-server interaction for two nodes, where one device acts
as a client and sends a command to another device acting as a server).

– The Application Support Sub Layer (APS) provides an interface between
the Application layer and the Network layer. Moreover, it is also responsible
to interact with the Security Service Provider. This provider employs a
security mechanism such as key establishment and transport during network
operations to secure message exchange across the Network layer and the
APS. For example, these keys are exchanged by ZigBee devices to verify
their permission to connect to the network.

Figure 2.16: ZigBee stack architecture view.
Source: [96]



2.4. PROTOCOLS IN 3RD-PARTY IOT INTEGRATIONS 41

Discussion. ZigBee is used inside the IoT context to provide low-power device
connectivity suitable for smart-home appliances. As a result, both Amazon and
Samsung adopt this protocol due to its features of scalability, energy consumption and
capabilities mapping. As a matter of fact, ZigBee also provides an application profile
that is used for energy optimization called Smart Energy. This profile is employed
on residential and commercial environments to provide metering (i.e. electricity
measurement), pricing (i.e. payment of energy used), scheduling (i.e. when the device
executes a pre-defined task), demand response and load control. As a result, this
protocol addresses the energy-aware concern from §1.3.3, so that IoT devices are able
to report energy usage to end-users.

A 3rd-party manufacturer that decides to adopt this standard can also certify
its product through a ZigBee certification. IoT platform providers are entitled to
ask 3rd-party vendors to certify ZigBee products before applying to their platform.
Consequently, this certification guarantees device compliance with the standard, but
causes an increased development cost (i.e. test + certification cost) and production
time. In addition, when a manufacturer updates the device firmware, a re-certification
can be triggered if necessary.

In conclusion, ZigBee is a powerful industry-standard, adopted for multiple purposes
by IoT platform providers. It gives numerous network functions, which perfectly fit
the smart-home application domain. However, IoT platform providers adopting ZigBee
may require the device to be compliant to the standard so as to be interoperable with
other devices, causing an increased production cost.

2.4.3 KNX IoT, a standard for 3rd-party APIs

Overview. KNX is an association that promotes a standard in smart-homes and
building automation. As reported in [65], this association is oriented to realize a stan-
dard that is accepted by market players and adopted by manufacturers, so as to create
a single and affordable technology. This standard aims at providing interoperability
between devices and applications.

Figure 2.17: KNX IoT 3rd-party API characteristics overview to interact with foreign
IoT ecosystems (i.e. Amazon Alexa)

Source: [55]

As motivated in [55], KNX IoT 3rd-party API is a component of this standard, whose
purpose is to add interoperability to KNX ecosystems with external 3rd-party vendors
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and clients. An external vendor can interact with standard 3rd-party APIs to exchange
messages with a KNX platform. In other words, from the definitions in §1.3.1, KNX
IoT works on top of the application layer of an IoT architecture. This part takes
advantage of a standard protocol to a serve an interface for 3rd-party clients and a
Cloud-to-Cloud solution for 3rd-party integrators. Consequently, this standardization
leads to interoperability because from the Cloud perspective the same standard can be
re-used across multiple IoT ecosystems.

KNX IoT 3rd-party API entities. In this standard, KNX provides freely available
APIs specification from [53], that are linked to entities belonging to KNX semantic.
Each entity represents an abstraction to interpret different attributes and character-
istics of an IoT device. There are several core entities that can be accessed through
APIs by 3rd-party manufacturers:

• A datapoint is a simple object that represents a readable and writable attribute
linked to a device capability. For example, a device that has an On/Off capability
can have a datapoint exposing the status of the device, that can be altered with
another value.

• A function is a collection of datapoints that defines a device capability. For
example, a roller shutter switch can have an On/Off capability, but also shades
lift and tilt capabilities.

• A location identifies a physical zone in a building where functions, datapoints
or other entities belong to (e.g. a living room, the kitchen).

• A set of information are hosted for 3rd-party manufacturers to discover available
services in the API. For example, this set of information contains the server
name (i.e. the name of the plant), version of the KNX IoT specification and
available API end-points (i.e. where the resources are hosted and available for
clients through the APIs).

• A subscription is a powerful entity that allows a 3rd-party manufacturer to be
notified when an entity is altered. For example, when a light switch is manually
turned on, a 3rd-party vendor receives a notification.

Besides this list, other entities that are used in the standard are reported in [53].
In this analysis, the above list is enough to give an overview of the KNX IoT protocol.

API characteristics. KNX IoT covers 3rd-party manufacturers access to a KNX
ecosystem through resource-centric REST APIs. The term REST stands for Rep-
resentational State Transfer, meaning that APIs use a REST architectural style for
processing data transfer. Therefore, as discussed in [89] and [88], REST APIs follow
precise criteria to be considered so. Firstly, REST APIs use the client-server architec-
ture model, where a client asks for a resource and a server handles the requests through
HTTP. Moreover, client-server communication must be stateless, which means that
the server completes every client request independently between all previous requests.
Hence, each client request is separated and isolated. Secondly, a uniform interface
must be provided, thus data is transferred in a standard communication form. In other
words, this means that the data format from one ecosystem must be adapted to the
KNX IoT data format before being served. This interface has four requirements:
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• a request shall identify a resource through a URI (Uniform Resource Identifier,
e.g. GET /document/42);

• clients must have all the required information provided by the server to manipulate
resources (i.e. modify or delete a resource);

• a client shall receive a self-descriptive messages from the server to process the
representation of received data (i.e. the data format must be self-expressive);

• clients must receive hyperlinks provided from the server to discover related
resources.

In addition, REST APIs must be organized in a layered system involved in requests
processing operations invisible to the client. Therefore, several components responsible
for security, load-balancing and business-logic can be used together to satisfy the client
request, without showing the complexity underneath.

Figure 2.18: KNX IoT 3rd-party API workflow example with a client requesting a
protected resource.

API security. Regarding security, KNX IoT 3rd-party API leverages OAuth 2.0 to
provide authorization and permissions for clients. This protocol has been partially
discussed in §2.3.1. From an architectural perspective, OAuth is a security component
that is added in the layered system of the APIs to process authorization requests.
Therefore, when a client interacts with APIs, OAuth is invoked to provide security
operations described in the RFC 6749 (see [82]). For example, a security operation
provides an authentication flow for the client to interact with protected resources. An
interaction in a simplified form is the following:

1. The client sends credentials to the KNX IoT 3rd-party APIs using the OAuth
data format.

2. These credentials are checked by the KNX IoT 3rd-party APIs through the
OAuth server.

3. Then, if credentials are valid, the OAuth server generates an Access Token. This
token can have a lifetime limit and can be used as a credential to access protected
API resources with certain permissions linked to the client account.
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4. Afterwards, the token is sent by the KNX IoT 3rd-party APIs to the client in
response.

Once the client receives the Access Token, the token must be sent in addition to a
resource request. When this token expires, it can be recreated according to the other
OAuth operations. To give an idea of this example, Figure 2.18 shows an interaction
with a client and a KNX IoT 3rd-party APIs. It is important to note that normally an
OAuth server would have its set of APIs to provide security operations. However, as
shown in [53] (i.e. KNX IoT 2.0.0 API specification), an authorization end-point is
provided directly (i.e. /oauth/access), which uses the OAuth server concealed to the
client.

2.4.4 On the quest for interoperability
From this overview, both standard protocols aim at interoperability through different
approaches. In details, ZigBee is employed in two layers of the five-layer IoT architecture
proposed in §1.3.1:

• In the network layer, the ZigBee Coordinator is a node that rules network traffic
and message exchange of other nodes attached. In fact, the ZigBee Coordinator
is a powerful gateway from a proprietary IoT ecosystem that is able to recognize
and install new ZigBee-enabled 3rd-party devices.

• Conversely, ZigBee End-devices and ZigBee Routers belong to the perception
layer. These devices are able to exchange messages with a ZigBee Coordinator
based on the network topology (e.g. mesh network) and device capabilities (e.g.
a ZigBee End-Device can only send or receive messages with a ZigBee Router).

Regarding KNX IoT, the standard is employed in the application layer to expose an
API service that is used to exchange data in a conventional data format. This format
must be recognized by a client, acting as a middleware de facto. However, 3rd-party
Cloud-to-Cloud integration is not free from concerns regarding interface compatibility,
API usage and security. Figure 1.12 from §1.4 shows that the application layer from one
ecosystem requires the middleware to interact with the application layer of a foreign
ecosystem. In this interaction, KNX IoT exploits a client-server communication model
that works on top of REST APIs to interpret and transport data in both layers. The
API resources and the security protocol to use must be defined by both APIs in order
to provide interoperability between services.

In conclusion, in this writing we investigate deeper in the development process of a
real implementation. This is important to capture unforeseen constraints, troubles and
intricacies for 3rd-party integrators on a practical level. Therefore, the next chapter
shows two real implementations of a Gateway-connected integration with ZigBee and
a Cloud-to-Cloud interaction using KNX IoT APIs. These integrations are analyzed
and compared to understand emerging issues from a 3rd-party integrator perspective
in a real use case context.



Chapter 3

Thesis contribution

3.1 Case study definition
In this chapter, we investigate integration solutions of a real case study with a company
called Vimar. As the company website reports [85], Vimar covers several commercial
sectors belonging to electrotechnical material and electronics (e.g. electrical outlets,
intercoms). Vimar is particularly active in home automation as a complementary part
of its commercial solutions. Furthermore, Vimar stands out as a device manufacturer
since all solutions are completely made by the company itself, except computing units
(e.g. microprocessors). The role of this company is especially important for the case
study, because Vimar is a device vendor that acts as a 3rd-party integrator for major
IoT ecosystems. Consequently, in this case study we had to analyze, design and
implement company solutions by impersonating an integrator working for Vimar. The
integrator’s objective aimed at creating middleware solutions for Vimar IoT devices
and foreign ecosystems. These solutions have been realized according to what have
been discussed in §2, leveraging market and user needs for the company.

Figure 3.1: Case study phases and objectives in parallel with product realization.

The phases and the objectives of this case study were four:

• We investigated and collected major company needs to trace the direction of
the case study in sub-parts. Then, we provided an analysis of the best-fitting
solutions for foreign ecosystem integrations. To achieve this, we have also analyzed
architectural components, features and requirements needed from an integrator
perspective.

• Then, we designed multiple solutions to build a state-of-the-art device integration.
Furthermore, we identified critical parts of each solution, thus simplifying future
maintenance and improvements of the solution. This was also essential for the

45
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company to avoid breaking the compatibility of IoT devices with other IoT
ecosystems.

• The integration solutions have been developed and tested. Then, we traced the
results along with emerging problems resulting from the integration.

• Lastly, we analyzed the final product to highlight pros and cons of each integration.
Then, we concluded by showing satisfied company needs compared to the premises.

3.2 Industrial needs
In this section, we identify the company’s business needs, which reflect the enterprise
and commercial context of Vimar. We thoroughly analyze those needs and broke them
down in groups which we addressed in distinct, subsequent phases of this case study.
We start with the identification of the IoT devices involved in the case study, so as
to understand the context and the product objectives. Then, the case study analyzes
company needs and the corresponding solutions. Lastly, we summarize the sub-parts
of the case study.

3.2.1 IoT devices for the case study
First of all, we had to assess with the company which category of products required to
be studied. In this case, Smart Home View Wireless products – from now on called
View Wireless products – were taken under analysis. These products are a family
of IoT devices that covers light switches, actuators with power measurements, roller
shutter switches and thermostats. These devices are employed in the Smart-Home
context for home appliances control, power consumption and automatic temperature
regulation.

From the the technical perspective, this family of products leverages an hybrid
nature with two industry-standard protocols implemented in two different firmwares,
respectively.

• The former firmware works with Bluetooth. In this case, a Vimar IoT device
must be connected to a Vimar Bluetooth gateway via mesh network. Moreover,
the gateway must be connected via Wi-Fi, thus requiring an Internet modem to
provide local and remote connection. Figure 3.2 shows the devices connected
using Bluetooth.

Figure 3.2: Vimar View Wireless products with a Bluetooth-connected gateway
integration.
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• The latter firmware works with ZigBee. In this case, a Vimar IoT device requires
a foreign compatible ZigBee gateway to work. Figure 3.3 shows the Vimar IoT
devices connected to an Amazon Alexa Hub using ZigBee.

Figure 3.3: Vimar View Wireless products with a ZigBee-connected gateway from
Amazon Alexa.

As a result, these solutions aim at satisfying different market needs with respect to a
proprietary ecosystem solution (i.e. Bluetooth) and a 3rd-party ecosystem solution (i.e.
ZigBee). The end user choosing a Vimar ecosystem can interact with Vimar IoT devices
using either a proprietary mobile app (called View Wireless) or a virtual assistant
from the supported 3rd-party integrations (e.g. Google Home, Amazon Alexa). Table
3.1 shows the supported 3rd-party integrations for the Vimar ecosystem. Furthermore,
these information are also reported inside the website [70].

The Bluetooth firmware supports 3rd-party integrations in different commercial
IoT ecosystems, such as Google Home, Amazon Alexa, IFTTT and Apple Home. The
customer must own all Vimar products (i.e. IoT devices and gateway) to use the
proprietary app. On the other hand, the ZigBee firmware supports Amazon Alexa
3rd-party integration. However, the customer must own an Alexa-enabled Hub to use
the device. Other 3rd-party integrations are not officially supported by Vimar.

From Table 3.1, IFTTT – i.e. If-This-Then-That – is the only integration working
with the Bluetooth firmware of Vimar View Wireless devices that is not covered in
§2. This solution provides user-defined services to run automations with 3rd-party
services. For example, it is possible to turn on a light switch whenever we receive an
email or a specific notification. Being a service, this solution requires a Cloud-to-Cloud
integration to establish the communication.

Google Amazon Apple IFTTT
BLE firmware ✓ ✓ ✓ ✓
ZigBee firmware - ✓ - -

Table 3.1: Supported 3rd-party integrations of Vimar View Wireless device firmwares.

For the case study, we used five models of Vimar devices. We want to clarify that,
at the time of this writing, more than five models have been analyzed and integrated.
However, part of these integrations cannot be publicly reported due to internal company
policies.
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• 2-way Smart Switch. This device is a physical switch that is used to control
lightning in the house.

• Smart Actuator with Power Metering. This device is used to control a
physical plug for large home appliances (e.g. dishwasher, fridge).

• Smart Actuator Module. This device is able to control lightning or physical
plugs through an internal module that can be controlled through an external
switch. The behavior of the firmware is the same of the 2-way Smart Switch.

• Smart Roller Shutter Switch. This device controls home roller shutters
through a physical device.

• Smart Roller Shutter Switch Module. This device is used as a controller of
roller shutters through an internal module. This module can be controlled by
an end user through an external switch (e.g. up/down). The behavior of the
firmware is the same of the Smart Roller Shutter Switch.

After introducing an overview of Vimar products, we analyzed the company needs
according to the five products reported above.

3.2.2 SmartThings integration
In the first part of the case study, we investigated with the company a new 3rd-party
IoT ecosystem to add in support of View Wireless products. Table 3.1 shows that View
Wireless devices leverage on two firmware solutions. The Bluetooth solution covers
four 3rd-party integrations, while the ZigBee solution only covers one integration with
a foreign ecosystem. Consequently, with respect to §2.1, SmartThings (i.e. Samsung
ecosystem) was the only major integration not covered by Vimar devices in either
BLE or ZigBee. As a matter of fact, considering SmartThings growth discussed in [94]
and §2.1.4, the Samsung ecosystem compatibility became a market need, as well as a
company need. Therefore, the main objective for Vimar was to integrate the Samsung
solution in View Wireless products, thus satisfying commercial needs for customers.

In order to provide an integration with SmartThings, we discussed three integration
solutions reflecting the ones reported in §2.2.

• The first approach was the Cloud-to-Cloud integration solution. As shown in
§2.3.1, SmartThings supports this type of integration, which requires the design
and development of a remote middleware. However, from the application layer
perspective, Vimar Cloud would had to supply an external API interface thanks
to which the middleware could communicate. Furthermore, this solution would
have required the Bluetooth firmware on Vimar devices as the only viable solution.
In fact, the Vimar gateway handles the Bluetooth network with Vimar devices
and so it must be connected to the Vimar Cloud to communicate. Consequently,
the entire integration solution aimed at those customers who already have the
complete Vimar solution with Vimar gateway and relative devices in their house.

• The second approach was the Gateway-connected integration solution. This
approach is also supported by SmartThings, as discussed in §2.3.2. In order to
accomplish this integration, the ZigBee firmware would have been employed in the
development since the ZigBee protocol is compatible with a SmartThings-enabled
Hub. As a matter of fact, SmartThings requires a compatible device which
implements the ZigBee industry-standard protocol. The device behaviors are
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controlled by the SmartThings-enabled Hub with the help of a driver. Conse-
quently, the entire integration solution aimed at SmartThings customers who
already own part of the SmartThings solution in their house.

• The third approach was the Direct device integration. As shown in §2.3.3,
SmartThings also supports this type of integration, requiring a deep modification
in terms of firmware. This integration would have required a new firmware adap-
tation that works either on top of Bluetooth (i.e. mobile-connected integration) or
on top of a direct Wi-Fi connection (i.e. direct-connected integration). However,
the Wi-Fi integration could not be realized with existing IoT devices, because
they are only enabled for Bluetooth and ZigBee from the hardware perspective
(see the public device specification sheets in the website [70]). Therefore, a differ-
ent Bluetooth firmware could have been realized to satisfy a direct connection
with a mobile device using the SmartThings app.

With these considerations in mind, SmartThings integration was possible in all
three ways. From a company perspective, there were two kind of customers to satisfy.
Vimar customers – i.e. vertical customers –, owning the complete Vimar solutions,
would have found an extra integration available. Conversely, SmartThings customers –
i.e. horizontal customers –, owning the SmartThings solution, would have been able to
use a Vimar device without a Vimar gateway. Since both approaches were capable to
satisfy valuable market segments, we identified with the company other decision-making
factors to take in consideration.

Time and costs. In order to realize the integration, an estimated time and costs
for the development was required. This involved different actors depending on the
solutions. In the Cloud-to-Cloud solution, application and Cloud developers were
consulted. Conversely, the Gateway-connected and Direct device solutions would have
required platform and firmware developers to handle the development – or possible
readjustment – of the network protocol (i.e. ZigBee, BLE) and extra components (i.e.
device app, drivers).

Capabilities coverage. All solutions had to cover multiple device capabilities
depending on the IoT devices to integrate. This was crucial to provide equal device
behaviors, as in the complete Vimar solution. For example, a Vimar Actuator with
power metering capability had to report the same Watt measurement to the end user
both in Vimar ecosystem and in a foreign IoT ecosystem.

Semantics and Data formats. Each ecosystem used its proprietary semantics
and data formats in order to abstract devices in classes, attributes and relationships.
Therefore, the integration would had to be addressed either at the application layer
or at the network and perception layers. In the Cloud-to-Cloud solution, Vimar and
SmartThings semantics would had to be acknowledged by developers to build the
remote middleware. In the Gateway-connected integration, ZigBee and SmartThings
semantics would had to be addressed either for the driver realization. Lastly, in
the Direct device integration the firmware internal semantics and the SmartThings
semantics would had to be employed in the development of the firmware.

According to time and costs, the company could have decided to lower as much
as possible the Time-To-Market (TTM) of SmartThings integration. Therefore, the
solution with the lower estimated time to be developed could have taken place. Then,
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we analyzed with the company the state-of-the-art capabilities available. We noted
that the Cloud-to-Cloud solution covers the same device features of 3rd-party Cloud-
to-Cloud integrations with the Bluetooth firmware. Moreover, the Gateway-connected
solution covered the same feature set available in the Amazon integration with the
ZigBee firmware. Lastly, the Direct device solution required an estimation for each
IoT device, since a new firmware was supposed to be created. We also noted that
semantics and data formats complexity depended on each integration solution. This
means that the integrations depended on the complexity of the abstractions used to
provide functionalities in IoT devices.

Furthermore, we highlight that from a state-of-the-art analysis the Gateway-
connected solution was already partially implemented because the ZigBee firmware was
already available. The local middleware employed in the Gateway-connected solution
worked as an independent component that did not required re-adjustments from the
device firmware side, at least in the premises.

Figure 3.4: SmartThings Hub-connected integration overview with Vimar IoT devices.

Company’s first choice was to create a Gateway-connected solution by using the
already existing ZigBee firmware. This choice would have required lower development
time and costs since a SmartThings-compatible protocol (i.e. ZigBee) was already
available for Vimar devices. Moreover, the set of features in the ZigBee firmware was
the same of the Amazon integration. Therefore, these features had to be linked with
the corresponding features in the SmartThings ecosystem, thus requiring a deeper
analysis for each Vimar device. We decided to integrate in the SmartThings ecosystem
all five devices discussed in 3.3 using the ZigBee firmware.

The Gateway-connected solution appeared to be the best choice at the time of the
analysis, because the Cloud-to-Cloud integration and Direct device integration carried
negative implications:

• The Cloud-to-Cloud solution would have required a higher development time
because both company data-models were supposed to be acknowledged and each
device would have required its own realization to properly map features and
behaviors. Consequently, this resulted in higher costs in terms of resources (i.e.
developers, cloud resources), thus the solution was not taken under consideration;

• The Direct device solution would have employed a new firmware development
which was not re-usable in different 3rd-party integrations. Moreover, this
solution would have required the constant use of a mobile device connected to
the IoT device, lacking remote controls of the latter.
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After analyzing the first need, we organized the sub-part of the case study – from
now on called Case Study A. Before proceeding, we also investigated the second
company need.

3.2.3 KNX IoT 3rd-party API integration
In the second part of the case study, we take a look with the company at 3rd-party
APIs. Vimar is a company that takes advantage of standards to re-use architectural
components. In this case, Vimar implemented a standard 3rd-party API solution
to provide device control for external customers. This standard is called KNX IoT
and provides a standard HTTP interaction through REST APIs. From the security
perspective, OAuth 2.0 is already implemented as well. We have discussed both
standards (i.e. KNX IoT 3rd-party API and OAuth 2.0) in an overview presented in
§2.4.3. Vimar is an active partner and promoter of the KNX standard in multiple
home automation solutions. Recently, with the introduction of KNX IoT, Vimar took
part in the development of the standard to realize 3rd-party APIs specification.

From a company perspective, the KNX IoT 3rd-party API is a cloud component
that could have been used for two different use cases.

Access to the IoT ecosystem. The first use case concerned a standard 3rd-party
API access for external customers. This became important to grant access to the
company ecosystem for 3rd-party integrators. For example, an external customer that
chooses Vimar devices for an office can create its own application to provide lightning
control, power metering and thermostat control. These features can be implemented
by an external integrator to handle power consumption and remote control of the office
equipment with custom functionalities.

Cloud-to-Cloud integrations. The second use case concerned the Cloud-to-Cloud
integrations with foreign IoT ecosystems. In this case, a company owning KNX IoT
APIs would have been able to employ an external Cloud component to handle Cloud-
to-Cloud integrations. For example, this use case enables a company to provide a
Cloud-to-Cloud integration with SmartThings, which requires an AWS Lambda Func-
tion that interacts with the KNX IoT APIs.

The use cases described above show how KNX IoT APIs could have been used for
different purposes. As a matter of fact, Vimar already implemented KNX IoT APIs
server-side. However, in order to provide Cloud-to-Cloud integration, we analyzed these
use cases to understand middleware’s nature. In both cases, the remote middleware
acts as an intermediary between two interfaces, as discussed in §1.4. Therefore, being
KNX IoT based on REST APIs, we expected a client-server communication model.

Figure 3.5: KNX IoT client solution overview for Cloud-to-Cloud integrations.
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Therefore, our analysis showed that a middleware solution can be regarded as a
client-side entity, which handles the Cloud-to-Cloud integration. As a result, a
client component provided by the company could have helped 3rd-party integrators
to understand entities and relationships of the KNX IoT standard. Moreover, a
client could have been reused in 3rd-party integrations of external customers as a
modular component. For example, an external customer that wanted to create its
integration could have been able to employ the Vimar supplied client in its code-base
to communicate with the KNX IoT APIs.

These premises suggested that the client-side middleware discussed above was
supposed to feature the following properties:

• The client had to be compliant with KNX IoT standard. This was mandatory
in order to provide KNX IoT compatibility with the corresponding semantics
and data formats. Moreover, it had to support all the available API end-points,
which were supported also server-side. Additionally, the client had to include
entities, attributes and relationships of the KNX IoT data-model.

• The client had to be re-usable. Therefore, it had to be realized in a form of an
SDK or a library, so as to be implemented in multiple 3rd-party integrations.

• The client had to support vertical extensions. This means that 3rd-party
integrators were supposed to use different abstraction layers of the client in their
integration. These layers were also incrementable, meaning that a new layer can
be added to the architecture to provide a new level of abstraction. For example,
an integrator can use the client to retrieve raw HTTP response data with the
lowest level of abstraction. However, by adding a new vertical component it
is possible to provide objects, which are capable of handling the complexity
underneath.

• The client had to support horizontally extensions. This means that each
horizontal component of the client can be extended by a 3rd-party integrator to
include new functionalities covering additional needs. For example, an object
representing a light switch can be wrapped with extra features (e.g. decorator
pattern) to handle additional states and behaviors client-side.

With these features, we designed a client for the second sub-part of the case
study – from now on called Case Study B –, which satisfied Cloud-to-Cloud 3rd-party
integrations. The Vimar devices used for this integration were the same reported in
§3.2.1, with the exception of the Smart Roller Shutter Switch and the Smart Roller
Shutter Switch Module. We provided an integration of only a part of devices to
demonstrate the capabilities of the client. Future development will be dedicated to the
improvement of new devices.

3.2.4 Summarizing company needs
In this section, we summarize major company needs for the case study. We provided
with the company a classification of marketing needs and technological requirements
of each family of products. Marketing needs describe the expected behaviors and
quality for end users. Conversely, technological requirements describe expected device
features and specifications. However, due to company policies, marketing needs and
technological requirements are not reported in this thesis. We consider that the absence
of these needs does not impact the objectives of this case study, described in 3.1.
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Table 3.2 shows the two major company needs addressed in §3.2.1 and §3.2.3. We
refer to these needs with CS-A (i.e. Case study A, Gateway-connected integration)
and CS-B (i.e. Case study B, KNX IoT API client).

# Description
CS-A Gateway-connected integration for the SmartThings ecosystem
CS-B KNX IoT standard API client for Cloud-to-Cloud integration

Table 3.2: Major company needs for this case study divided in Case Study A and B.

We addressed the Gateway-connected integration for each Vimar device under
study. The KNX IoT 3rd-party API client, instead, was employed for only three Vimar
devices. Table 3.3 shows Vimar devices involved in case study A and B. We must note
that each Vimar device had a different number of features to satisfy, according to the
integration to accomplish.

# Device CS-A CS-B
1 2-way Smart Switch ✓ ✓
2 Smart Actuator Module ✓ ✓
3 Smart Actuator with Power Metering ✓ ✓
4 Smart Roller Shutter Switch ✓ -
5 Smart Roller Shutter Switch Module ✓ -

Table 3.3: Vimar devices involved in CS-A (Gateway-connected integration) and CS-B
(KNX IoT API client).

In the following sections, we present a deep analysis for CS-A. We take a look
at SmartThings ecosystem from an integrator perspective. The objective was to
realize a Gateway-connected integration for the devices in Table 3.3. Then, the second
part of the case study (i.e. CS-B) is analyzed to provide a KNX IoT API client for
Cloud-to-Cloud integrations.

3.3 Integrating Gateway-connected IoT devices
In this part we investigate CS-A for Gateway-connected integration of Vimar IoT
devices. The analysis starts from an overview of SmartThings Hub-connected solution,
in which we explain the main workflow of SmartThings ecosystem. Then, we provide an
overview on SmartThings data-model. This overview reflects the 3rd-party integrator
needs to create a driver that uses both ZigBee and SmartThings semantics. Furthermore,
speaking of drivers, SmartThings provides two different driver solutions. We analyze
both solutions to understand pros and cons for an IoT device integration. After
designing and developing the driver, we identify emerging problems from the point of
view of a 3rd-party integrator.

3.3.1 SmartThings integration workflow
In this section, we analyze the device workflow of a SmartThings Hub-connected integra-
tion. In §2.3.2, we discussed the Gateway-connected solution provided by SmartThings.
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This solution required a driver component that is installed in a SmartThings-enabled
Hub to handle 3rd-party IoT devices. We wanted to understand how the interactions
worked and which components were involved in the workflow.

Figure 3.6: SmartThings integration solutions view showing the various high level
interactions with the SmartThings Cloud and related SmartThings components (e.g.

SmartThings app, developer tools).
Source: [31]

Figure 3.6 depicts the main workflow of different integration solutions of Smart-
Things. A huge part of SmartThings components such as Hubs, mobile applications
and developer tools leverages the SmartThings Cloud. The SmartThings Cloud requires
access to the Internet to be establish a connection. However, with the introduction
of powerful gateways, part of the computing power is delegated outside the Cloud.
Consequently, in this integration solution, we wanted to identify how each component
interacts to process data inside the IoT platform.

From the architectural viewpoint, the Hub-connected solution is made of several
components belonging to different layers, based on the IoT architecture proposed in
§1.3.1.

• IoT devices use the ZigBee protocol connected through a mesh network. This
network allows nearby devices to connect to exchange messages through paths,
as discussed in §2.4.2. Moreover, this mesh network is strictly controlled by
the Hub, acting as ZigBee Coordinator. Conversely to the ZigBee standard,
the SmartThings-enabled Hub is also the only node that can act as ZigBee
Coordinator. Other IoT devices cannot impersonate the ZigBee Coordinator
function. This design choice made by Samsung supplants the self-healing feature
of ZigBee, because when the Hub fails, the entire mesh network cannot be
controlled by other ZigBee nodes.

• A SmartThings-enabled Hub leverages the role of ZigBee Coordinator. This
device handles message exchanges and network traffic between IoT devices.
Moreover, it uses drivers to register either proprietary or 3rd-party IoT devices.
SmartThings products, as well as 3rd-party products, can join the network
based on the drivers installed in the Hub. The Hub is also responsible for the
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Internet connection that brings data exchange with the SmartThings Cloud. The
SmartThings-enabled Hub can also handle pre-defined routines and automations
made by end users. These routines are executed inside the Hub. Hence, if
the Internet connection is absent, routines will still be available for the users.
However, the users are not able to directly control the Hub, unless the Hub itself is
connected to the Internet. Therefore, if a user defines a routine that involves two
IoT devices in the ZigBee network, the Hub registers and executes the routines
even if the Internet connection is absent. Moreover, routines are also available for
heterogeneous family of products. For example, when a SmartThings occupancy
sensor detects a movement, the Hub is notified and executes the routine by
invoking a turn on command for a 3rd-party light.

• The SmartThings Cloud is the main processing unit of the SmartThings
architecture. It manages the end user Samsung account in the SmartThings
platform. The Samsung account is employed across the entire SmartThings
architecture to identify user devices (e.g. Hub, ZigBee-connected devices, mobile
app) and permissions (e.g. Hub control, account linking for 3rd-party devices).
The SmartThings Cloud is also responsible for the development tools and portals,
which are used by 3rd-party integrators. Furthermore, the SmartThings Cloud
provides also a set of Public APIs for Cloud-to-Cloud integration solutions.

• The SmartThings App is a mobile application for end users. With this appli-
cation, a user can control connected home appliances, routines and automations.
Moreover, in this app a user can install new SmartThings-compatible devices,
organize locations (e.g. living room, bedrooms) and manage account settings.
Furthermore, this mobile app is the main user interface to control the devices in
the SmartThings ecosystem.

Figure 3.7: SmartThings Hub-connected solution workflow based on the five-layer IoT
architecture. The business layer is omitted in this figure to show the main interactions

involved in the case study.
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Figure 3.7 summarizes the architecture described above. We wanted to highlight
a parallelism with the proposed architecture. As shown, IoT devices belong to the
perception layer and connect through the SmartThings-enable Hub via ZigBee mesh
network. The Hub, which belongs to the network layer, handles the Internet connection
to the SmartThings Cloud to exchange data regarding commands or status requests of
IoT devices. Then, the SmartThings Cloud belongs to the processing layer and provides
data exchange for mobile apps, tools and portals – which belong to the application layer.
Since Samsung does not provide an official documentation of the internal SmartThings
Cloud architecture, we assumed that a set of internal APIs is supplied for mobile apps
and developer tools. These internal APIs should not be confused with SmartThings
Public APIs, that are currently in preview at the time of this writing, as shown in
the official website [78]. Public APIs are used to interact with the entire SmartThings
platform (e.g. automations, locations, devices) for 3rd-party app developers.

In conclusion, the workflow of the SmartThings ecosystem showed at high level the inter-
action between the main components of the architecture (i.e. IoT devices, SmartThings
Hub, SmartThings Cloud and applications). For CS-A, the SmartThings-enabled Hub
was the component of interest, because it contained the driver that acts as a middleware
between the 3rd-party IoT device and the SmartThings ecosystem. Consequently,
before dealing with driver development, we have analyzed SmartThings semantics to
understand design choices and any possible emerging issue related to the available
features for the middleware implementation.

3.3.2 SmartThings semantics: an overview
SmartThings provides different solutions for IoT device integrations, discussed in
§2.1.4. Hub-connected solution is one of the integration solutions that works on top
of a SmartThings-enabled Hub, which we identify as a powerful gateway in §2.3.2.
The Hub is able to provide interoperability between IoT devices using the ZigBee
protocol. As a matter of fact, interoperability is achieved with an extra component
called driver, that is used to interpret ZigBee commands, convert data formats and
send SmartThings-formatted payloads to the SmartThings Cloud. We noted that
this workflow can also work backwards: when the SmartThings Cloud transmits a
command to the IoT device, the driver handles the communication to the IoT devices.

The SmartThings Cloud identifies an IoT device using a semantics specifically
designed for the SmartThings ecosystem. This semantics is strictly related to drivers,
as it contains entities and relationship to recognize a foreign IoT device and interpret
incoming data. SmartThings semantics is divided in entities that we report in the
following list:

• Device profiles. A device profile is the definition of properties and functionalities
belonging to an IoT device. In the device profile, three different entities are
present:

– General information. The first entity is a set of general information specif-
ing the ID of the device profile, the status (e.g. development, production)
and the device profile name.

– Metadata. Metadata is a set of additional information, identifying device
type, vendor identifier and extra properties.

– Components. A component is an entity used to assemble multiple capa-
bilities. Each device profile must have at least one component and each
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component has at least one capability. Optionally, one or more categories
can be specified inside a component. We have defined capabilities and
categories in a separated list below.

A component can contain two types of entity:

• Capabilities. A capability is an abstraction of a device function. The Smart-
Things Cloud is able to report the status of a device component (e.g. relays
status). Moreover, this status can vary through commands sent by the IoT
device or the SmartThings Cloud (e.g. the relay is physically set to open and
the SmartThings Cloud is notified of this status change).

• Categories. A category identifies the SmartThings-defined type of device that
the end user is interacting with. Furthermore, the category specifies also parts of
the UI (e.g. the default icon) used in the SmartThings mobile application.

Figure 3.8: Example of a device profile that defines the identities and properties of an
IoT device inside the SmartThings ecosystem.

Figure 3.8 shows the structure and the relationship of identities and properties, which
are parts of the device profile. Device profiles are employed inside the SmartThings
ecosystem to represent the abstraction of an IoT device. In this case, SmartThings
expresses the device profile in a JSON-formatted payload, so as to be interpretable for
external 3rd-party integrators.
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The device profile shows the functionalities of the IoT device expressed in capabilities.
These capabilities can have attributes and commands belonging to the SmartThings
semantics and data formats. For example, in Figure 3.8 the Vimar Smart Actuator
with Power Metering has a capability called switch. This capability is documented in
SmartThings with corresponding attributes and commands. Figure 3.9 shows how a
switch capability is implemented, having an attribute called switch and two enumerated
commands, which are on and off.

Figure 3.9: Example of a SmartThings switch capability that is used to control a
switch device with corresponding attributes (i.e. switch) and commands (i.e. on, off).

Source: [31]

Device profiles constitute a part of the SmartThings semantics to handle IoT devices
in the SmartThings ecosystem. In order to make ZigBee devices communicate with a
SmartThings-enabled Hub, a driver must handle the entire device profile, including
device ID, ZigBee clusters and additional properties. In the following sections, we
introduce a comparison of drivers using the SmartThings semantics and working inside
the Hub. These drivers can be adopted for the Gateway-connected integration with
corresponding pros and cons. Therefore, we started by analyzing these drivers and
then we chose the best-fitting option for our integration.

3.3.3 Legacy vs new drivers
At the time of this case study, we investigated drivers solutions for the SmartThings-
enabled Hub. We have worked closely with a SmartThings team to understand the
differences between two drivers solutions provided for the integration. At the time
of the analysis, SmartThings was introducing a new driver solution in preview that
was called Edge Drivers. However, before Edge Drivers, another solution called Device
Handlers was employed for 3rd-party integrations. Since Device Handlers were still
available as a legacy solution, we wanted to analyze the differences against Edge Drivers
to capture the corresponding pros and cons before realizing the integration.

Device Handlers. Device handlers are lightweight drivers, made of a single script
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file written in Groovy programming language. A single driver contains a set of func-
tions used in SmartThings to convert ZigBee commands in SmartThings events, and
vice-versa. SmartThings events are the abstraction made by SmartThings to interpret
requests of any kind coming from different entities. For example, with an event we can
notify the device status to SmartThings or handle a specific payload sent by the ZigBee
device. The main characteristics of device handlers concern the difference in handling
3rd-party devices. As a matter of fact, a device handler contains all the supported 3rd-
party IoT devices belonging to a specific category (i.e. switches, light bulbs) provided
by SmartThings. For example, in the official public repository [75], device handlers are
organized by manufacturers and by device main characteristics. This categorization
generates bewilderment, because part of device handlers are provided and maintained
by SmartThings and another part is maintained by 3rd-party manufacturers, with the
supervision of SmartThings. Moreover, a 3rd-party manufacturer can decide whether
to create a new device handler with its customization or re-use the already provided
device handlers with less customization.

The device handler is made of different parts that are required to support a 3rd-party
device. These parts are the following:

• Driver information and capabilities. A device handler defines its information
regarding name, ID and author. Furthermore, SmartThings capabilities are
defined to enable device functionalities. These capabilities requires ad-hoc
command handling functions to interpret the device behavior.

• Fingerprints. A fingerprint is used to identify a ZigBee device through its
exposed properties. These properties are contained inside a ZigBee cluster called
Basic, which holds the main identification attributes of the device. For example,
the cluster contains attributes such as model id, vendor information, hardware
version, firmware version and related characteristics. The SmartThings fingerprint
is able to identify an IoT device by using ZigBee clusters and ZigBee application
profiles defined in the device. These information are accessible through the
service discovery mechanism that we discussed in §2.4.2.

• Message parsing function. When an IoT device sends a command, the
device handler employs a message parsing function defined inside the device
handler. This function interprets symbols from the ZigBee data format and
builds the corresponding SmartThings event to send to the SmartThings Cloud.
Consequently, in this part, the semantics of ZigBee and SmartThings are employed
to properly translate device behaviors. A 3rd-party integrator can customize this
part according to its device behaviors.

• Command handling functions. A device handler is equipped with auxiliary
functions defined by SmartThings for the ZigBee integration. These functions can
be employed for initial device configuration, device status refresh and commands
handling (e.g. on/off command invocation, roller shutters direction management).
Moreover, extra functions with custom names can also be used to support existing
functions.

• User interface customization. A device handler can also customize the user
interface in the mobile application. However, at the time of this case study, this
functionality has been deprecated in favor of a SmartThings-defined UI that is
common across the entire mobile application. Before deprecation, it was possible
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to add custom icons, colors and widgets to the mobile application, thus allowing
3rd-party developers to make different UI choices.

Edge Drivers. An edge driver is a package of scripts, written in the Lua programming
language. This package embeds 3rd-party implementations hierarchically organized.
Each driver has a generic implementation that defines the attributes and the capabilities
of the driver. Furthermore, each driver can include a sub-driver which is manufacturer-
defined. The hierarchy dept has no limit, hence multiple sub-drivers and sub-sub-drivers
– and so on – can be included. For example, an Edge Driver that concerns a Light
Switch can be defined with the corresponding capabilities and functions. Then, a
sub-driver can be included to add dimming controls, thus regulating the light intensity
through the supported SmartThings capability – which is called switchLevel in the
SmartThings documentation. Moreover, a manufacturer can even add a deeper level of
sub-driver to interpret specific device behaviors from additional ZigBee clusters – such
as Light color, from the previous example. Thanks to this approach, SmartThings
achieved an ordered way to realize an Edge Driver, according to manufacturer needs.
However, when a top level package is modified, the nested sub-drivers inherit those
modifications. Therefore, this can be a risk in terms of maintainability, because this
can break compatibility with existing integrations. Nevertheless, the SmartThings
team develops and maintains top level packages, and also supervise the development
of nested sub-drivers realized by 3rd-party manufacturers.

Edge Drivers are composed of similar functionalities that are also present inside
device handlers.

• Driver configuration. The entire driver configuration is defined inside a YAML
file (called config.yml). This file defines the name of the drivers, the protocol
supported (i.e. ZigBee) and the packageKey, which is used to identify the driver
inside the SmartThings ecosystem.

• Fingerprints. A fingerprint is used to identify an IoT device based on the
ZigBee attributes exposed. Similarly to Device Handler, fingerprints define the
model id and the manufacturer id of the supported device. These information
can be added inside a common YAML configuration file (called fingerprints.yml),
which contains 3rd-party device fingerprints defined by 3rd-party manufacturers.
Furthermore, a fingerprint binds a device profile to an IoT device, thus defining
its capabilities and categories.

• Device profiles. A device profile defines the SmartThings capabilities according
to the UI widgets. Therefore, a 3rd-party manufacturer can define the items of
the UI in the mobile application. However, SmartThings manages these widgets,
so UI customization is limited. We noted that the device profiles contains a
versioning system for each capability. Therefore, each capability can be updated
UI-side according to the version defined in the device profile. This means that a
different UI can be used for the same capability. Consequently, a driver behavior
can also be affected, according to the attributes and commands of a specific
capability version. At the time of this writing, Edge Drivers are still available in
beta version, therefore only one version of each capability is present.

• Capabilities. Capabilities are defined in the device profile of a 3rd-party device
and in the driver business-logic. This means that a sub-driver inherits all the
capabilities of a parent driver that declares the capabilities. This approach
also ensure re-usability of components (i.e. parent driver) at the cost of less
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independence (i.e. if a capability is added to the parent driver, the sub-driver
automatically includes that capability).

• Functions. The package of an edge driver includes Lua files used to define device
behaviors through functions. These files contain all the required functions to
interpret payloads from ZigBee devices, understand the message and create events.
This process also works towards ZigBee devices and it is similar to the message
parsing function defined in the device handlers. However, device handlers use
only one function to handle message parsing, while Edge Drivers employ function
handlers. These handlers can be customized according to the device behaviors
supported by the driver. For example, an handling function for switch capability
manages commands to turn on or off an IoT device. A 3rd-party manufacturer
can override the default on/off handler providing a function callback in the driver
definition.

Figure 3.10: Structures of a Device Handler (legacy solution) and an Edge Driver
(newer solution). The former solution works within a single file, while latter solution is

structured with a hierarchy of packages.

Discussion. At the time of this writing, SmartThings was working on the conversion
of Device Handler into Edge Drivers. However, the previous solution shares some
differences that are important to highlight to understand pros and cons.

• Single file vs Package hierarchy. The single file approach creates more
confusion for 3rd-party integrators as opposed to package hierarchy. This is
caused by the fact that many device handlers share code forking techniques
to add customization inside SmartThings-maintained code. In this case, many
manufacturers used if-statements to provide portion of code that shall be ex-
ecuted only for their devices. This approach fails in terms of good-practices
for development and maintenance. Conversely, a package hierarchy approach
addresses this issue by giving 3rd-party vendors their portion of driver. However,
a hierarchy can cause problems whenever a sub-driver relies on top of a driver
definition. For example, if a top driver function is changed, all the sub-drivers
are affected, thus causing instabilities.
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• UI Customization. Device handlers supported UI customization that became
deprecated at the time of the case study. As a result, SmartThings approach
limited 3rd-party manufacturers in customizing the user experience. Hence, user
experience is led by SmartThings itself, according to its design choices. However,
Edge Drivers support a bit of customization through capabilities versioning,
which is still poorly-defined at the time of this writing.

• Local Routine Execution. Device handlers support local routine execution
only for those drivers that are developed and maintained by SmartThings. Hence,
custom device handlers require an Internet connection to execute routines on
nearby devices. Conversely, Edge Drivers are installed inside SmartThings-
enabled Hub. Therefore, local execution is widely supported for any kind of
driver.

• Unit Testing. Edge Drivers support the creation of unit tests. These unit tests
are employed to simulate device behaviors before submitting a new driver to
the SmartThings platform. Device Handlers do not support this feature, but
instead they use simulators that are embedded inside the device handler file script.
In this case, it is clear to see that device handler approach fails in separating
business-logic with tests for 3rd-party manufacturers.

After working with device handlers, Edge Drivers became the choice for the Smart-
Things Hub-connected integration. In fact, we discovered that the legacy approach will
not be supported in the future by the SmartThings team, even though Edge Drivers
were in still beta at the time of the case study. We note that with the company we
realized both driver solutions to deeply study both approaches. However, the Edge
Driver solution has been chosen at the time of the analysis as the final products, due
to the pros in terms of local routine execution and package hierarchy management. In
the following section, we go deeper in the design choices to create an Edge Driver for
the devices involved in CS-A.

3.3.4 Trial implementation
In this section, we introduce an analysis of Edge Drivers integrations for five Vimar
devices. First, we present an overview of the development process, that we discuss
following a real integration use case. We start from the 2-way Switch to illustrate the
Edge Driver implementation. This implementation was the same across all IoT devices
of CS-A. Then, for each device we analyze expected behaviors and functionalities.
Lastly, we discuss problems and concerns regarding the integration solution. At the
time of this writing, since Edge Drivers were still in beta version, we suggest to follow
the up-to-date SmartThings documentation [39] to reproduce the experiments.

# Fingerprints (fingerprint.yml)
zigbeeManufacturer:

- id: "Vimar/xx592-2-way-smart-switch"
deviceLabel: "Vimar 2-way Smart Switch"
model: "On_Off_Switch_v1.0"
manufacturer: "Vimar"
deviceProfileName: "vimar-on-off-bulb"

Snippet 3.1: Example of a fingerprint file for an Edge Driver configuration.
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Development process. We present the development process by taking the Vimar
2-way Smart Switch as an example. This smart switch enables the user to control
lightnings connected inside the house. Therefore, the device reports to the Hub the
status of a switch. In order to create a compatible driver for a 3rd-party IoT device, we
discuss five phases of the development process, which we employed for the integration.

1. ZigBee device analysis. At first, we inspected the device properties belonging
to the ZigBee protocol. For the Vimar 2-way Smart Switch, we identified the
ZigBee On/Off cluster (i.e. Cluster ID: 0x0006) as the responsible for switch
controls. We checked the availability of this cluster inside Vimar devices using
ZigBee Service Discovery. In order to provide these information, we used an
external tool1, which acted as a ZigBee Coordinator to retrieve clusters and
attributes from nearby ZigBee devices. Another approach would have required
an analysis of the internal firmware specification of the device. In addition to the
On/Off cluster, we gathered all the required device information using the ZigBee
Basic cluster (i.e. Cluster ID: 0x0000). These information concerns manufacturer
name (i.e. Attribute ID: 0x0004) and model identifier (i.e. Attribute ID: 0x0005),
that are required by SmartThings for the fingerprint definition.

2. SmartThings capability analysis. In SmartThings, the main feature of
this device corresponded to the switch capability, which was reported in the
SmartThings capabilities list [77]. This capability has one attribute (i.e. switch),
identified by a string value (i.e. either on or off ), and two commands to turn
the switch either on or off. We verified that the behavior of the ZigBee Cluster
corresponded to the behavior of the SmartThings capability. In this case, we
bonded the switch capability to the on/off cluster, meaning that we took a note
of this capability, since it would have been used for the device profile creation.

3. Edge Driver selection. We chose an existing Edge Driver following the
capabilities needed. In this case, we worked with the public repository [76]
for SmartThings-maintained Edge Drivers. Therefore, this repository has been
downloaded and the files inside have been edited to realize our implementation.
We selected the closest driver that suited our needs, according to the capabilities
provided by the existing device profiles. For the 2-way Switch, we used the
zigbee-switch Edge Driver, which satisfied basic switch operations.

4. Edge Driver configuration. We implemented the actual driver starting
from the configuration. We created a new fingerprint inside a YAML file (i.e.
fingerprint.yml). The fingerprint required the model and vendor identifiers from
the ZigBee Basic cluster. Then, extra entries were required, such as the device
identifier (related to the SmartThings platform), the device label name (i.e.
the actual device name that appears to the end user) and the device profile
(that contains the declaration of the capabilities to use). Snippet 3.1 shows
an example of a fingerprint file employed for the Edge Driver configuration.
The fingerprint defines a device profile that the device uses in order to provide
capabilities. Device profiles are defined in YAML files inside the Edge Driver
folder (i.e. profiles/mydeviceprofile.yml ). These profiles can be re-used according
to 3rd-party device needs. In this case, we employed the on-off-bulb profile where
the switch capability is present. Snippet 3.2 shows an example of a device profile
definition.

1Due to internal company policies, we cannot provide the name of this tool.
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5. Business-logic development. The business-logic of the Edge Driver has been
implemented according to the device features. We noted that the Edge Drivers use
a naming convention for the main file, which is called init.lua. This file can be used
to add new sub-drivers, which are organized in folders contained inside the parent
driver. When we developed the driver, we could choose either to create a new
sub-driver, thus re-implementing inherited functions for a complete customization,
or to use an already implemented sub-driver, thus re-using existing components
without customizations. It was also possible to reuse the default implementation
of the driver. In this case, the Vimar 2-way Smart Switch did not need extra
features, besides the existing ones. Therefore, the fingerprint configuration was
sufficient to make the device work with the default functionalities.

# Device Profile (vimar-on-off-bulb.yml)
name: "vimar-on-off-bulb"
components:
- id: "main"

capabilities:
- id: "switch"

version: 1
- id: "refresh"

version: 1
categories:
- name: "Light"

Snippet 3.2: Example of a device profile for an Edge Driver configuration. Capabilities
are listed in this file and versioned, according to the SmartThings documentation. A
category can be used to identify the device type and the corresponding icon in the

SmartThings mobile application.

2-way Switch and Actuator Module. The 2-way Smart Switch from Vimar was
developed according to the ZigBee specification, that used the ZigBee On/Off cluster.
This cluster was also employed in the Smart Actuator Module, which behaved in the
same way as the 2-way Smart Switch. Consequently, both development processes
were the same. This means that both devices were registered inside the zigbee-switch
Edge Driver with the corresponding fingerprints and device profiles. However, a first
problem was raised in terms of fingerprint identification. The ZigBee firmwares of
these devices have been differentiated by Vimar, although the functionalities were
the same. However, the Smart Actuator Module used the same ZigBee model id of
the 2-way Smart Switch. Consequently, during the Edge Driver configuration phase,
it was not possible to differentiate one device model to the other. This condition
was critical in terms of device maintainability, because if a sub-driver was needed for
future improvements, both devices would have shared the same fingerprint. After
identifying this problem, we opted for a model id change at firmware level. This
change was expected, because from the initial studies an Edge Driver requires these
information to differentiate drivers. However, we note that this is not the case for
different manufacturers, because the manufacturer id helps to avoid model id collisions.
Moreover, this constraint for the ZigBee protocol may cause compatibility problems
in foreign IoT ecosystems, whenever the model id is exploited to differentiate device
models.



3.3. INTEGRATING GATEWAY-CONNECTED IOT DEVICES 65

Actuator with Power Metering. The Actuator with Power Metering required the
On/Off cluster and the Electrical Measurement cluster (i.e. Cluster ID: 0x0b04). This
last cluster was used to measure Watt power detected by the actuator. In fact, this
actuator was supposed to be attached to plugs to collect power consumption. From
the SmartThings ecosystem, a corresponding capability called powerMeter was used to
retrieve this information. In this case, the development process required the use of a
sub-driver (i.e. zigbee-switch-power) to implement the functionalities of this device.
However, a custom sub-sub-driver was employed to satisfy extra requirements. As a
matter of fact, the sub-driver implemented a power measurement formula to calculate
the total Watt consumed. This formula has been changed to adjust the measurement
output with the correct unit of magnitude. Therefore, we used a custom sub-sub-driver
to fix the behavior by overriding the function handler with a custom function, fixing
the output. Snippet 3.3 shows an excerpt of the original Edge Driver business-logic
calculating the power measurement.

-- zigbee-switch-power driver (init.lua)
local function active_power_meter_handler(driver, device, value, zb_rx)

local raw_value = value.value
local divisor = device:get_field(constants.ELECTRICAL_MEASUREMENT_DIVISOR_KEY) or

10↪→

raw_value = raw_value / divisor
device:emit_event(capabilities.powerMeter.power({value = raw_value, unit = "W"}))

end

Snippet 3.3: Example of a function handler extracted from a init.lua sub-driver (i.e.
zigbee-switch-power ). This function parses the value of the power measurement and
emits an event to the SmartThings ecosystem with the corrected output reading.

Roller Shutter Switch and Switch Module. The Roller Shutter Switch and the
Roller Shutter Switch Module are two devices used to control window shades. These
IoT devices are fairly more complex in terms of functionalities, with respect to the
previously analyzed devices. The ZigBee cluster required for both devices was the
Window Covering cluster (i.e. Cluster ID: 0x0102), which handled several different
attributes concerning lift and tilt positioning (e.g. window shades limits, current
values). The SmartThings ecosystem required a corresponding capability to define
the supported functionalities. In this case, even though tilt and lift positioning was
supported by Vimar devices, only lift positioning was available as a capability. In
details, three capabilities were used:

• windowShade was used to support open, close and pause commands of window
shades;

• windowShadeLevel was employed to support a specific positioning of the window
shades at a given level (e.g. 100 corresponds to open, thus setting the level to 50
moves the shades to a half-open position);

• windowShadePreset was used to allow the user to set a pre-defined level to open
window shades.

These three capabilities have been defined inside the Edge Driver using function
handlers. In this case, an existing driver was available to support Vimar devices
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features. Therefore, we created a new sub-driver from the zigbee-window-shades driver.
This Edge Driver required a complete re-implementation according to Vimar Roller
Shutters behaviors.

A first problem that emerged from the implementation was the lack of current lift
values updates provided by the Vimar device. In details, when a shade level was set
by the user from the app, the Roller Shutter switch did not sent any kind of status
update until the destination was reached. We noted that this behavior was accepted
by the ZigBee standard. However, it was not accepted by the SmartThings mobile
application because when an update status event was missed, a timeout error showed
up inside the application. This became a problem to be fixed, thus avoiding bad user
experience for this integration.

Another problem was found in the fingerprint for the devices recognition. The Roller
Shutter switches shared the same problem with the 2-way Switch and the Actuator
Module, i.e. the model id resulted in a collision. Therefore, this issue required a ZigBee
firmware update to differentiate both devices, even though the same Edge Driver was
employed in both integrations.

Discussion. We have analyzed each Vimar device of the case study in order to
provide integration solutions. As discussed above, we identified new emerging prob-
lems regarding the local middleware implementation. As a matter of fact, these
problems have been addressed according to company choices, whose purpose aimed
at reducing firmware modification as less as possible, due to higher costs related to
development, tests and firmware release. We have classified four emerging issues during
the integration process.

• Identification. The first issue is related to the identification of Vimar devices.
The 2-way Smart Switch and the Smart Actuator Module required a firmware
update in order to differentiate the model id. In the same way, also the Roller
Shutter Switch and Roller Shutter Switch Module required this modification.
This issue was strictly related to the SmartThings ecosystem, which was not
capable to use other attributes to differentiate IoT devices with the same model
id. Consequently, a 3rd-party manufacturer must check whether its devices have
model id collisions in the ZigBee Basic cluster.

• Edge Driver and firmware version. The second issue concerns the bind
between an Edge Driver and the ZigBee firmware version. In this case, when the
3rd-party device has a firmware update, the Edge Driver must continue to work.
However, if the firmware adds extra functionalities (e.g. new ZigBee clusters), a
3rd-party manufacturer must edit the existing edge driver to differentiate the
new firmware behavior. Since a SmartThings fingerprint exploits the model id,
the 3rd-party manufacturer must change the model id to provide this difference.
Consequently, SmartThings should support different ways to differentiate the
same device model based on the firmware version. For example, the Basic cluster
has two attributes that can help to differentiate firmware versions: Application
Version (i.e. Attribute ID: 0x0001) and SWBuildID (i.e. Attribute ID: 0x4000).
This issue is important because when a 3rd-party vendor provides a new firmware
update to commercialized product, the firmware update might be delayed by
device owners. As a result, this event may cause inconsistencies to 3rd-party
device behaviors.

• Expected vs Actual behaviors. The Roller Shutter Switch and Roller Shutter
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Switch Module required a complete new sub-driver to handle window shades
control in the SmartThings app. Furthermore, the expected behavior of the app
is completely different with respect to Vimar device behaviors. Even though these
devices were also ZigBee certified, timeout errors raised up in the SmartThings
mobile app due to the missing shade level update event. Nevertheless, Smart-
Things documentation did not provide any kind of help in terms of expected
behaviors. Consequently, in the future, SmartThings should provide a way to
demonstrate the actual application behavior with respect to the integration
solution.

• Sub-driver dependencies. The last issue concerns sub-driver dependencies. As
previously discussed, Edge Driver’s hierarchy brought a big change in the context
of SmartThings driver solutions. However, a hierarchy approach to organize
drivers and sub-drivers might break compatibility when the root driver code – or
the parent sub-sub-driver code – is modified. As a result, the hierarchy creates a
strong dependency, which can lead to complex driver maintenance. Therefore,
SmartThings should supervise Edge Drivers integration to limit manufacturers
in the creation of a high level of depth.

These problems have been partially addressed during the realization of Vimar device
integrations. As noted, SmartThings integration may require extra steps for 3rd-party
vendors in order to make the Edge Drivers working. A firmware update might be
required to integrate expected behaviors of the SmartThings application. On the
other hand, changing the attributes at protocol level might cause incompatibility
with foreign IoT ecosystem integrations. Therefore, even though at a first glance the
Hub-connected integration was expected to be faster in terms of development and
cheaper in terms of resources, emerging issues resulted critical for user functionalities
and future maintenance. The lack of feature support (e.g. no tilt positioning for the
roller shutter switches) depended on the SmartThings capabilities. Future maintenance,
instead, must be addressed correctly from the SmartThings team to avoid fingerprint
collisions.

At the time of the experiments, an extensive study has been made with the company
before proceeding with the implementation reported above, since we identified a set
of features and tests for each device. We report the results of these tests in the last
section of this chapter to present quantitative results of the integration. Moreover,
these tests compare the Edge Driver integration with the initial study made with the
legacy Device Handlers. The purpose of this report is to highlight the feature set
covered by each solution, thus providing full interoperability of Vimar devices in the
SmartThings ecosystem. Before proceeding to the results, we present CS-B concerning
the KNX IoT client creation for Cloud-to-Cloud integration.

3.4 Designing a KNX IoT client

In this part, we investigate CS-B to design a KNX IoT client for Cloud-to-Cloud
integration. We start analyzing an overview of the client requirements and client
properties. Then, we provide a study on the KNX IoT client architecture employed for
the integration. This study highlights the use of the semantics provided from different
interfaces. We note that the internal Vimar semantics and data format is not analyzed
in details, due to company policies. The goal of this case study is to trace the client
functionalities to support 3rd-party Cloud-to-Cloud integration. Moreover, we analyze
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the workflow of the client employed for Cloud-to-Cloud integration. In the end, we
identify emerging problems from the point of view of a 3rd-party integrator.

3.4.1 Requirements of a KNX IoT client
In this section, we analyze requirements regarding the functionalities of the client.
These requirements concern the nature of the client, the expected 3rd-party integrator
needs and the design choices from a developer viewpoint. First of all, at the time of
the analysis we classified the requirements based on the 3rd-party KNX IoT standard
APIs:

• The client should have the basic functionalities to handle HTTP requests to
REST APIs. These functionalities concern the API end-point access through the
HTTP specifications. In this case, an error handler would have been included,
thus covering multiple API responses.

• The client should provide security mechanisms according to the OAuth standard
protocol in the KNX IoT specification. This includes the realization of an
authentication handler able to secure API interactions.

• The client should provide abstraction layers to simplify the 3rd-party integrator
work. These layers can be used to manipulate data at different levels by using
a specific semantics to interpret symbols. For example, at a lower level data
is untouched, meaning that no conversion of symbols is employed. In higher
levels, data is manipulated according to a specific semantic, so as to provide
different programming objects for the corresponding semantics. This means that
we expected data in a form of a JSON payload in the lowest layer, while at
the highest layer we expected data in a form of a language-specific object with
attributes.

In the following paragraphs, we discuss each requirement in isolation.

Basic functionalities. The KNX IoT client was supposed to handle REST API con-
nection to access resources. This required the client to support basic HTTP handlers,
so as to compose a request and receive a response. Consequently, an HTTP library
that provides these functionalities was be included in the client. Moreover, the APIs
required the use of a specific JSON data format to receive and send requests. We
noted that the format of the JSON was regulated by the KNX IoT specification, which
follows a standard called JSON:API [51]. This standard explains how to build APIs in
JSON according to a specification schema. This standard is also recognized by IANA
(Internet Assigned Numbers Authority) as a supported media type (i.e. Content-Type
field) for HTTP requests. Consequently, the client was also supposed to support this
media type to use the APIs.

Security mechanisms. In the context of a KNX IoT client, the OAuth proto-
col provides interaction mechanisms to secure the authentication in the KNX IoT
3rd-party APIs. In addition to OAuth, TLS (i.e. Transport Layer Security) [12] is
employed by the standard to secure the communication between the client and the
server. For this client, we identified two main operations to include inside the client.

• The first operation is the protected resource access. This operation leverages an
Access Token, which is placed in the HTTP header field (i.e. Authorization
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field) of an HTTP request. This token is based on the JWT industry-standard
(JSON Web Token), which is defined in the RFC 7519 [50]. Moreover, the Access
Token can have an expiration time, after which the API access is denied.

• The second operation is the session refresh. This operation takes advantage of
the available API end-point (i.e. /oauth/access), which allows updating the
session using an entity called Refresh Token. When a session is created with the
OAuth server, a client receives an Access Token and, optionally, a Refresh Token.
The Access Token is used to access protected API resources on every HTTP
request, while the Refresh Token is used to get a new Access Token, when the
Access Token expires.

Parts of these operations have been previously discussed in §2.4.3.

Figure 3.11: Example of a client architecture composed of abstraction layers. At the
lowest layer, JSON data symbols are not interpreted, while at the highest layer light

bulb and smart plug object definitions are available.

Abstraction layers. We designed the KNX IoT client to manipulate data in different
levels of abstraction. This means that the client provides to 3rd-party developers
multiple ways to interact with the APIs. Each way corresponds to a different level of
complexity. The complexity is based on the semantics used to interpret data symbols.
Therefore, a developer can choose to use either top-level objects or low-level objects
for its integration. KNX entities (i.e. functions, datapoints, etc.) are provided by the
KNX IoT 3rd-party API in a form of a JSON payload. The client can convert data to
obtain complex objects organized in data structures to provide top level entities. A
top level entity hides the complexity underneath, thus reducing the development work
of 3rd-party developers. Hence, if HTTP requests are already handled by the client,
3rd-party integrators can concentrate on the top level interaction.

The example of a light-dimmer device may clarify the notion. In KNX IoT, a
light dimmer can be interpreted as a KNX function, which has two datapoints. The
former datapoint is used to indicate the status of the light (i.e. either on or off ).
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The latter datapoint is employed for the light intensity (i.e. a percentage from 0% to
100%). When the client requires a KNX function to the KNX IoT 3rd-party APIs,
the two related datapoints can be discovered, because the REST API model provides
extra knowledge of related resources, as discussed in 2.4.3. However, when the client
interacts with the API, the resulting payload is in JSON format, whose symbols must
be interpreted by the developer. Therefore, if the client provides a light bulb as an
abstract object, a developer can directly use the light bulb – based on a KNX function
object from the lower layer – with two properties (i.e. light status and light intensity).
Additionally, the light bulb object can contain two functions to manipulate the two
properties (e.g. set light status and set light intensity). We must note that this
abstraction might help when creating a Cloud-to-Cloud integration. As a matter of
fact, when the client is employed as a remote middleware, multiple data-models (e.g.
the KNX IoT data-model and the 3rd-party data-model) must be included to convert
top-level objects in corresponding requests. Therefore, the use of abstraction layers
aims at satisfying multiple development approach, meaning that any layer can be
used to accomplish the integration using different data-models. Figure 3.11 shows an
example to represent data of a real object in different abstraction levels.

3.4.2 Sought client-side properties

In this section, we analyze client properties that we have singled out in §3.2.3. The
client must met these properties because each property defined a characteristic required
by the company. Therefore, we discuss how each property have been integrated in the
client and whether extra properties were required to fulfill further needs.

Reusability. We identified reusability as the first characteristic to determine the
nature of the client. A reusable (client) module is designed as an SDK or a library.
These forms are easier to include in 3rd-party integration projects. As a matter of fact,
a library can be included in either applications or serverless functions. In both cases, a
library can also be hosted in a package manager, so as to be distributed across devel-
opers. Another important concern was the programming language to use. Nowadays,
many programming languages can be adopted to create libraries. A report from the
Northeastern University [62] shows that Python, Javascript and Java are the leading
languages for 2022. Consequently, for CS-B, we chose Python as the programming
language to build the library. Python offers simple syntax and easy learning curves,
compared to other languages, as discussed in [93]. Moreover, it is actively used in
data science by the academic community to create powerful applications thanks to
the large amount of libraries available. Being Python actively used for commercial
and academic applications, we expected our library to be re-usable by developers for
3rd-party integrations.

Standard compliance. The client was supposed to meet the KNX IoT standard spec-
ification, so as to be used for 3rd-party integrations. Therefore, the basic functionalities
have been implemented according to the available REST API endpoints. This means
that the HTTP request component of the client supports the media type specification
and the authorization header, discussed in §3.4.1. We also introduced support for the
CRUD operations available in each end-point and we tested the corresponding call to
verify the correct response handling by the library. We also included error handling
for the HTTP part. Therefore, when the client receives an error after a request, the
error will be correctly handled, so as to be presented in a form of an object with
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standard-based error codes.

Vertical extendability. We introduced the concept of a client-side entity, which
can be vertically incremented to support multiple levels of abstraction. To clarify this
concept, we note that the client is vertical since it is built as a stack architecture made
of multiple components. Each component is a layer of the stack architecture with
a corresponding level of abstraction. Moreover, the client is subject to increments
(or extensions), because a new component can be added to the stack architecture to
provide a new layer of abstraction for the objects underneath. However, since these
components are added as increments, each component depends on the next lower
component. A client with such properties meets the requirement discussed in §3.4.1,
because new layers can be added in the architecture of the client to provide new levels
of abstraction. However, this causes a strong dependency between components, which
can be helpful to simplify the complexity, but can be dangerous when it comes to
maintenance. As a matter of fact, with an increasing number of component, the level of
abstraction increases. On the other hand, when a component in the middle of the stack
requires modifications, this may cause incompatibility with the overlaying components.

Horizontal extendability. Lastly, we introduced the concept of an horizontally-
extendable client. We used this concept to describe a client made of a stack architecture,
whose layers can be extended in functionalities. This means that each layer can be
modified to add new features in the same level of abstraction. Consequently, a 3rd-party
integrator can decide to add new functions to a layer without touching the existing
code base. This is a premise that leads to an objected-oriented approach to extend
existing classes with custom functionalities. For example, a top level layer having a
class representing a light can be extended to create a light dimmer.

After this analysis, we developed a KNX IoT client that meets the requirements
from §3.4.1 and the properties just discussed. In the following section we analyze the
corresponding architecture and workflow of the client to understand the interactions
with the KNX IoT API server.

3.4.3 Client architecture and components workflow
In this section, we provide an analysis of the client architecture and the corresponding
components workflow. We start with collecting the various components of the archi-
tecture. Then, each component is discussed and compared with respect to properties
and requirements. Lastly, we present the components workflow of the architecture,
simulating a Cloud-to-Cloud integration.

Client architecture. At first, we addressed the components of the architecture.
In this case study, we used a 3-layer architecture to represent different level of abstrac-
tions. Each level is dependent on the lower level. Moreover, the aim of this architecture
allows a developer to either use existing entities of the lower layer (e.g. a KNX function
employs an HTTP request to retrieve its datapoints) or extend existing entities of
the lower layer (e.g. a vendor-specific entity extends a KNX IoT Function to provide
attributes and operations). The 3-layer architecture is described below.

• Traversing the architecture bottom up, the first layer is the HTTP layer. This
layer is used to handle HTTP requests and authentication. In this layer, we
covered the REST API communication to access API end-points and retrieve
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resources in a form of JSON. When a developer requires a resource, an HTTP
request handler is instantiated according to the available end-points. Then,
the HTTP layer is also responsible for response and error handling. Therefore,
the payload had to be properly organized in an object without any symbolic
interpretation. In other words, the received payload remains in a JSON format,
unless an error occurs. Furthermore, an error handler was employed to interpret
HTTP error codes, thus providing error meanings. For example, if the client
receives error code 404 after requesting a resource, the error handler must interpret
the error code and the relative payload in output (i.e. Resource not found). The
payload in output describes the error using a standard-specific JSON format.
This layer is also responsible for the authentication header when a resource
is accessed. Therefore, the creation of an HTTP header is delegated to the
authentication handler. Then, this HTTP header is used by the HTTP request
handler to perform the request.

Figure 3.12: Client architecture overview with different layers to interpret the
data-models.

• The layer above the HTTP layer is called KNX IoT layer. We employed
this layer to include KNX IoT entities representation through objects. This
layer ensures a simpler object manipulation for the 3rd-party integrator, because
data coming from the HTTP layer is interpreted from a JSON format using
the KNX IoT semantics. Therefore, KNX IoT objects can be used to handle
attributes, properties and relationships for Functions, Datapoints, Locations and
Subscriptions. For example, a Function object can interpret an HTTP response
payload (i.e. a JSON payload from the KNX IoT API server) and re-use an
existing HTTP request handler to retrieve its datapoints.
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• The top layer of the client library is the Vendor-specific layer. This layer
defines the vendor-specific objects based on the vendor-specific semantics. As a
result, KNX IoT objects from the lower layer are extended in order to hide the
complexity of the KNX IoT semantics to the developer. Therefore, the top layer
is employed for device modeling. In other words, an abstract model of a device
with the corresponding attributes and functions can be created in this layer to
manipulate vendor-specific devices. Moreover, a developer that uses an object
from vendor-specific layer can control a vendor-specific device without directly
using the layers underneath.

In addition to this layer, a 3rd-party integrator can access client objects by using a
Client Façade. A client façade provides functions and operations using the layers of
library, while hiding the structure of the library to a utilizer. For example, a client
façade may contain HTTP requests handlers for each KNX IoT API end-point and
also functions to return KNX IoT objects. When a vendor-specific integrator uses
this library, it can also extend this façade. The extended façade can be employed to
cover objects from the vendor-specific layer, thus adding functionalities to the base
client façade. Figure 3.12 shows the layers of the KNX IoT client architecture. From
this figure, we included the vendor-specific façade that extends the – base – client façade.

Client workflow. We now illustrate an example of a client interaction based on a
Cloud-to-Cloud interaction. The library is employed inside a client that acts as a
remote middleware. We assume that the client is developed by the 3rd-party integrator,
using the data-model of the integrator. We note that the vendor-specific layer can refer
to the data-model of the KNX IoT API provider (e.g. Vimar internal data-model).
The interaction of the remote middleware happens in 8 phases:

1. The integrator API requires a resource to the client.

2. The client uses a built-in function of a vendor-specific object of the client library
to retrieve the requested resource. We assume that the vendor-specific layer
extends the KNX IoT layer. Therefore, the data format is simply adapted for
the KNX IoT layer.

3. Data passes from the KNX IoT layer to the HTTP layer. The data format is
changed to create HTTP requests leveraging KNX IoT API data format.

4. The HTTP layer builds an HTTP request that is sent to the KNX IoT 3rd-party
APIs to get the requested resource.

5. The KNX IoT API server replies with the requested resource.

6. The HTTP request handler passes the payload to a KNX IoT object, which
handles the requested resource through data symbols interpretation.

7. Data symbols of the KNX IoT layer are interpreted by the vendor-specific layer,
which returns the output of the function called in Phase 1.

8. The client receives the requested resource and forwards it to the integrator API,
following the integrator semantics and data format.

Figure 3.13 captures the workflow explained above. We note that this workflow is a
specific use case for a Cloud-to-Cloud integration. A 3rd-party integrator can also use
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either the KNX IoT layer or the HTTP layer, according to its needs. However, at the
higher layer the complexity reduces because the 3rd-party integrator does not need
to understand the KNX IoT 3rd-party API interaction underneath. In other words,
the client library handles the way – i.e. the standard – to communicate with the API
server, while providing a simpler interface to the user with read-to-use functionalities.

Figure 3.13: Example of a client workflow for a Cloud-to-Cloud integration.

Discussion. We designed and developed the client library to provide 3rd-party
integrators a remote middleware solution, capable of interpreting data in multiple
layers of abstraction. However, we noted that the highest layer (i.e. the vendor-
specific layer) could be interpreted by 3rd-party integrators as an additional abstract
layer to learn before realizing the integration. The aim of this library was to reduce
the complexity of the API interaction and permit multiple development approaches.
Therefore, a 3rd-party integrator could choose either to work with HTTP requests or
use objects from the vendor-specific data-model – without knowing how the KNX IoT
3rd-party API standard works.

For CS-B, we noted that the vendor-specific layer of the library has been equipped
with the Vimar internal semantics. Furthermore, the use of Vimar semantics for
3rd-party integrations simplifies the interaction and the support from the company for
external developers. As a matter of fact, in order to understand a KNX IoT object,
Vimar semantics is required, so as to correctly interpret data symbols. In this case
study, we identified two problems concerning the KNX IoT client development:

• The first problem concerns vendor-specific semantics. A company can choose
to hide its internal semantics to avoid exposing it to external developers. Al-
though the KNX IoT client can work without the vendor-specific layer, the
symbols interpretation from the KNX IoT layer may require a knowledge of the
vendor-specific semantics. Therefore, a company that offers KNX IoT 3rd-party
APIs for 3rd-party integrations must use a data-model that can be employed
publicly. For example, a KNX ecosystem uses a data-model called KIM (KNX
Information Model) that can replace the vendor-specific layer in the KNX IoT
client architecture.

• The second problem concerns remote middleware performance. In this case,
a Cloud-to-Cloud interaction leverages the KNX IoT client to elaborate data
in multiple layers. Nevertheless, the API performance may impact the user
experience, because latency times are affected by internal abstractions to provide
KNX IoT 3rd-party APIs.
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The first problem had to be addressed by the company itself, which decided what
data-model to use. On the other hand, we investigated the second problem using a
test-bench to measure latency time.

3.4.4 Performance evaluation
We decided to measure with a test-bench the latency time of an API interaction with
the KNX IoT client. This parameter is important because it helps to understand the
performance of the KNX IoT client, affecting the user experience. As a matter of fact,
when a user interacts with a mobile application to control an IoT device, a measurable
amount of time passes before having a visual feedback from the app. Therefore, we
measured the time that passes from the user interaction to the received notification.
This composes the latency time that we wanted to analyze. In details, we provide a
formula to measure latency:

L = TO − TI

where:

• TI is the time when the KNX IoT API Server receives a request from a KNX
IoT Client application.

• TO is the time when the KNX IoT Client receives a notification when the device
status changes, according to the request.

In order to provide these measurements, we used the KNX IoT client realized for Vimar
and the corresponding KNX IoT 3rd-party APIs. Moreover, a Vimar IoT device was
employed to trigger the device status notification.

• The KNX IoT client application was placed inside a machine with a Fiber
Internet connection. The Internet connection speed provided for the machine
was about 1000MBit/s in download and 300MBit/s in upload. We also note that
the client application was hosted inside a machine via an Ethernet connection
that directly connected to the Internet modem within a 10 meter distance.
Furthermore, the client machine was located in the North-East of Italy.

• The KNX IoT 3rd-party API server was hosted remotely in a server with
the same Internet speed available of the KNX IoT client. However, the server
was hosted in the West of Europe.

• The IoT device was connected through a powerful gateway from Vimar using
Bluetooth mesh technology in a 1 meter distance area. The powerful gateway
was connected to the internet using a 2.4 Ghz Wi-Fi connection within a 5 meter
range from the Internet modem.

For this experiment, the KNX IoT client had two components, that were used to
measure the latency time. The former component was the client application – equipped
with the client library –, which was used to send the request and register TI . The
latter component was the webhook. This component was used to register TO upon
receiving an IoT device update. Moreover, the webhook exposed a public HTTP
end-point (i.e. /updates/ ) that the KNX IoT 3rd-party API server invoked to send sta-
tus updates. This operation was regulated by the KNX IoT 3rd-party API specification.

Experiment workflow. The experiment was divided in six phases that we summarize
below:
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1. The client sends a payload with a toggle command (i.e. on/off) to the KNX IoT
3rd-party API end-point (i.e. PUT /datapoints/{datapoint_id}) through the
client library.

2. The API server receives the payload and elaborates the request. In this phase,
the API server gives in response to the KNX IoT client an HTTP status code
204. This means that the server has received the request and no content is
provided in response. Therefore, the KNX IoT client webhook starts waiting for
the asynchronous notification that happens in the last phase.

3. The API server elaborates the response and sends a command to the targeted
IoT device.

4. Once the IoT device changes its status, an update notification is sent to the
server through the powerful gateway.

5. The status update notification is received by the server. Then, the notification is
forwarded to the KNX IoT client webhook.

6. The KNX IoT client webhook receives the asynchronous notification and the
interaction ends.

Figure 3.14: Test-bench workflow to capture the latency time of a KNX IoT client
application changing the status of a device via Cloud-to-Cloud integration.

Figure 3.14 shows the interaction described above with the corresponding phases. We
executed the experiment by repeating the requests every 10 seconds. In each request,
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we toggled the status of the device. Therefore, the first request sent a turn on request
to an IoT device, then the second request sent a turn off request to the IoT device,
and so on. We organized 5 different sessions of 24-27 minutes in which we measured
approximately 150 requests per session.

Expected results. Before executing the experiment, we reported an amount of
expected latency of the integration solution. To do this, we studied the requirements
from the other competitors. First of all, Google Home [69] reported three metrics to
measure the quality of latency:

• the ideal latency is less than 0.2 seconds;

• the sufficient latency is between 2-5 seconds;

• the critical latency is above 5 seconds.

Amazon Alexa [32] did not report any kind of expected latency, but supplied some best
practices to reduce latency time for the Smart Home integrations. Since Alexa uses skill
to provide the Cloud-to-Cloud integration, the Alexa skill time limit is set to 6 seconds
by default. However, a 3rd-party integrator can increase this limit, thus requiring an
higher cost for the execution of the AWS Lambda function. SmartThings and Apple
did not provide a minimum requirement regarding the expected latency for 3rd-party
integrations. Speaking of academic literature, article [13] shows that the employ of
cloud communication increases the total latency between a request and a response. As
a result, we had to consider many factors that could be partially prevented for these
experiments:

• Internet connection. The Internet connection of the KNX IoT client could
have been subject to slowdowns caused by bandwidth contention with other
connected devices. Therefore, for this experiment we used only the client machine
connected to the Internet modem and we ensured that the Internet connection is
stable. In the same way, the powerful gateway was the only device active and
connected to the Wi-Fi modem.

• Cloud location. The location of the Cloud could have been one of the main
responsible for high latency communication. Since the Cloud server was located
in the Western Europe and the Client was located in the North East of Italy,
we calculated the latency for a normal HTTP request to the KNX IoT server.
This latency measurement helped us in learning the minimum expected latency
between the client and the server for a minimal request. Figure 3.15 shows the
latency from the client machine to the API server, in which the client receives
an API response to get information on the supported API versions (using the
/.well-known/knx end-point). Moreover, this request did not affect IoT devices,
meaning that the KNX IoT API only replied with server-related information (e.g
API version, base URL). We discussed below the obtained results.

• Cloud computing time. Depending on the architecture of the Cloud, the
request could have had a higher latency time. In this case, the latency could not
be measured directly for our experiments, since the Cloud infrastructure required
a complex analysis of each single component. Moreover, due to company policies,
we could not access the entire Cloud infrastructure. Nevertheless, we assumed
that the time registered from the start of the interaction and the status change
notification was sufficient to calculate the total amount of latency perceived by
the user.
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Figure 3.15: Latency measurement of Vimar KNX IoT 3rd-party APIs for a session of
18 minutes and 23 seconds. The latency is calculated between a client placed in the
North-East of Italy and a server located in Western Europe. The client request does

not affect the status of IoT devices.

N. of HTTP requests 500
Average latency 0.201s
Min. latency 0.187s
Max. latency 0.241s
Interval after each successful request 2.000s

Table 3.4: Latency results from Figure 3.15. For each request, the latency is
calculated as the difference between the time of the API response and the time of the
API initial query. After each API response, there are 2 seconds interval of idle time.

To conclude, we organized the measurement sessions with the company to trace
the latency of the interaction affecting an IoT device. For this experiment, we used a
Smart Actuator with Power Metering connected via Bluetooth to a Vimar gateway.
Before starting the experiment, we measured the average latency from the machine to
the server. As shown in Figure 3.15 and Table 3.4, we noted that the average latency
exceeds 200 ms. Therefore, the minimum expected latency was greater than 0.200s.
We decided with the company to adopt a metric similar to those in place for Google
Home and Amazon Alexa. Table 3.5 shows the thresholds defined with the company.

Thresholds Min latency Max latency
Ideal 0.200s 1.000s
Good 1.001s 2.000s
Tolerable 2.001s 5.000s
Not tolerable 5.001s 10.000s

Table 3.5: Latency thresholds for the experiments to trace the quality of the
measurements. These thresholds are defined with the company to understand the

performance level of the APIs.

At the time of the case study, we noted that the KNX IoT API server provided
by Vimar was under development during the experiments execution. Hence, we could
expect missing notifications during the sessions, since the entire Cloud architecture
could have been subject to slowdowns or other limits.
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3.5 Discussion

In this section we discuss the results we obtained from experiments CS-A and CS-B.
Both parts of the case study have been analyzed in the previous sections and many
concerns have been discussed, related to issues, performance and design choices. For
the SmartThings Hub-connected solution we expose integration tests results. These
results aim at the analysis of the feature coverage between two drivers integrations
developed for the SmartThings ecosystem. On the other hand, for the KNX IoT client
we expose the API performance results. These results reports the average latency to
complete a request using the KNX IoT 3rd-party APIs provided by Vimar. Lastly, for
both case studies we compare emerging problems and integration complexity from a
3rd-party integrator perspective.

3.5.1 SmartThings drivers feature coverage

In this section, we report SmartThings test results related to the local middleware
realization (CS-A). We have performed these tests internally with Vimar in order to
highlight the completeness of the SmartThings integration, compared to the expected
Vimar device requirements. Due to company policies, these tests cannot be exposed in
detail. Therefore, we report a quantitative amount of tests based on the legacy driver
solution (i.e. device handler) and the new driver solution (i.e. edge driver).

A test represents a feature of the Vimar IoT device. If the test passes, the feature
works in the SmartThings integration. Otherwise, if the test fails, the feature does
not work in SmartThings with the driver in use. Each test has been performed in the
same environment following the same conditions. The goal of these measurements is
to trace the number of working features for each Vimar device of this case study. This
is important to show the satisfied requirements for a 3rd-party integrator that chooses
one of the two driver solutions provided by SmartThings.
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Figure 3.16: Test results for SmartThings Device Handler integration with Vimar
devices.
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Figure 3.17: Test results for SmartThings Edge Driver integration with Vimar devices.

Figure 3.16 shows the results of Vimar integration tests using the Device Handler
solution. From this graph, it is possible to see that each device has been tested with a
different amount of tests. The 2-way Smart Switch and the Actuator module have the
highest test passed percentage (i.e. 85,71%) with respect to the other devices. Each
integration has at least one failed test. This means that the Vimar integration with
device handlers partially achieves the overall expected functionalities of Vimar devices.

Figure 3.17 shows the results of Vimar integration tests via Edge Driver integration.
In this case, only the Roller Shutter Switches have one single failed test. This feature
is related to the expected behavior of the window shade widget in the SmartThings
application, as discussed in 3.3.4. The overall test coverage achieves all the required
features expected by Vimar device integrations.
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Figure 3.18: Percentage of tests passed comparing the SmartThings device handler
solution and the SmartThings edge driver solution with Vimar devices.
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Figure 3.18 collects the percentage of tests passed over a total of five devices. The
Edge Driver integration has a higher number of features covered, while Device Handler
integration is able to cover only three quarters of the total features.

3.5.2 KNX IoT client performance
In this section, we present the test results of the KNX IoT client interactions with the
KNX IoT 3rd-party APIs (CS-B), as discussed in §3.4.4. We provided a total of five
sessions to measure latency. In each session we executed the client to change the status
of a Vimar IoT device. When the IoT device changes the status, the user gets notified.
The amount of time from the initial interaction and the notification is the latency.
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Figure 3.19: Test session #1 measuring KNX IoT client interaction latency. This test
session is 24 minutes and 27 seconds long with a total of 140 requests.
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Figure 3.20: Test session #2 measuring KNX IoT client interaction latency. This test
session is 25 minutes and 27 seconds long with a total of 147 requests.

Figure 3.19 captures the latency of the KNX IoT client interaction. The interaction
requires an average time of 1.883s to perform the required action over 140 requests.
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This average time is widely above the ideal threshold that we expected. Moreover,
the graph shows a few spikes above the tolerable threshold, reaching at most 6.756s
of latency. We traced back these spikes to the KNX IoT API server handling the
incoming requests with a few slowdowns, which were network dependent.

Figure 3.20 captures the second session of latency measuring. The client registered
an average interaction latency of 1.812s over 128 requests. From a total of 147 requests,
19 requests have not received a notification feedback, even though the KNX IoT
client received a positive HTTP status code (i.e. 204). We considered these missed
notifications to be caused by the KNX IoT 3rd-party API server, because the service
notification component of the server was not working as expected. As a matter of fact,
after investigating this issue, we found an accumulation of requests server-side. At the
time of the experiment, we reported the problem to the company, so as to fix the issue
for the future release. This event caused 2 missing notification periods of 126 seconds
and 53 seconds, respectively. Furthermore, 3 spikes have been traced: one above the
tolerable threshold (5.599s) and two below the tolerable threshold (4.825s, 4.977s).
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Figure 3.21: Test session #3 measuring KNX IoT client interaction latency. This test
session is 26 minutes and 50 seconds long with a total of 154 requests.
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Figure 3.22: Test session #4 measuring KNX IoT client interaction latency. This test
session is 27 minutes long with a total of 155 requests.
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Figure 3.21 and Figure 3.22 shows a trend similar to Test session #1. As a matter
of fact, each graph shows no missing notification and an average time of 1.804s (over
154 requests) and 1.883s (over 155 requests), respectively. In both cases, we have three
major spikes for each graph reaching above the tolerable threshold.
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Figure 3.23: Test session #5 measuring KNX IoT client interaction latency. This test
session is 25 minutes and 4 seconds long with a total of 144 requests.

Figure 3.23 captures the fifth session of latency measuring. The client shows an
average latency of 1.848s over 137 requests. From a total of 144 requests, only 7 requests
have not received a notification. This trend is similar to Figure 3.20, where a few
requests missed the status change notification. In this case, the blackout notification
period lasts for 84 seconds. In this session, we found one single spike above the tolerable
threshold (5.576s).
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Figure 3.24: Total number of requests over five test sessions.
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Figure 3.24 shows the total number of requests over five test sessions. We find
missing notifications in only 2 sessions (i.e. Test session #2 and Test session #5). In
the other sessions, each request has been correctly notified by the KNX IoT API server.
Furthermore, Figure 3.25 shows that the average amount of time remains the same
over the five test sessions. The average latency is under the 2 seconds threshold, being
equal to 1.847s.
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Figure 3.25: Average latency times over five test sessions.

3.5.3 Main findings

In this last section, we discuss the findings of the CS-A and CS-B. For both cases, we
compare the common emerging issues to highlight pros and cons of each integration.

Case Study A. We have analyzed the integration of five different IoT devices to
provide interoperability through a Gateway-connected approach. In this study, we have
traced the phases of the integration from the perspective of a 3rd-party manufacturer.
We have worked with the company to understand the best-fitting middleware solution
provided by SmartThings, concerning drivers. In this study, we have concentrated on
the features of each device to identify the level of Vimar device compatibility with
respect to a foreign ecosystem. As shown in 3.5.1, the device handler solution is able
to cover a part of the expected features (76.60% of tests passed) over five IoT devices.
Conversely, the edge driver solution covers almost all the expected features (95.74% of
tests passed). This result explains how SmartThings implementation improved with
the introduction of new drivers – i.e. local middleware solutions – in the SmartThings-
enabled Hub. Nevertheless, the Gateway-connected integration showed a few issues
with respect to the initial considerations.

• Development resources. The first issue concerns development resources. At
the time of the analysis, we expected a little amount of resources (i.e. developers,
testers, tools) to employ the SmartThings integration. As a matter of fact,
the ZigBee firmware was already available for Vimar devices. Therefore, the
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driver development was considered the main activity to provide the integration.
However, the identification process through SmartThings fingerprints required a
firmware modification. This modification was necessary to avoid driver collision
of two different models of Vimar devices in the ecosystem. Consequently, this led
to higher costs for the integration development, even though the modification
was minimal. Furthermore, we note that the IoT devices under study were
already commercialized. Hence, a big amount of customers already owns Vimar
IoT devices, and thanks to the SmartThings integration, five Vimar devices
are now compatible with the SmartThings ecosystem. However, these devices
require a firmware update before accessing the SmartThings platform, otherwise
the interoperability with the foreign ecosystem is not assured. As a result,
SmartThings was not capable to provide a detailed differentiation mechanism to
prevent the fingerprint collision issue.

• Features coverage. The second issue concerns the feature coverage of the
IoT devices. For the SmartThings integration, we expected the same amount of
features covered in the ZigBee firmware. However, the SmartThings capabilities
do not cover the entire feature set of ZigBee clusters. This lack of features was
caused by the SmartThings platform, which requires developers to conform to
the available capabilities. However, at the time of this writing, SmartThings is
gradually opening to custom capabilities solutions, so as to allow manufacturers
to cover the entire feature set as much as possible (see [35]). This is currently
limited to non-certified SmartThings products, hence it is not fully supported in
current integrations. For future device improvements, we expect an additional
customization of Edge Drivers to include custom capabilities in IoT devices.

• Behaviors. We have identified a mismatched behavior between the driver and
the SmartThings app with the driver for the Smart Roller Shutter Switch and the
Smart Roller Shutter Switch module. When a user invokes a set level command
from the app, a timeout error raises in the SmartThings app, even though the IoT
device is correctly operating. As a result, we have provided a deep study of the
SmartThings app to prevent this issue. Furthermore, the lack of documentation
regarding the expected behaviors of the app required higher times to understand
and correct the problem. With the help of the driver, part of this behavior has
been corrected to prevent the timeout error. We note that this behavior mismatch
is a clear example to show the compatibility limitation of an IoT ecosystem with
foreign 3rd-party devices, even though a standard (i.e. ZigBee) is employed for
the integration. Therefore, the platform should provide for the future a way to
regulate the app behavior based on the driver behavior to avoid this issue.

Case Study B. We have analyzed the design of a KNX IoT client library to provide
– from a platform provider perspective – a way for customers to use a proprietary
ecosystem. Moreover, this integration was employed to understand the potentiality of
a Cloud-to-Cloud integration based on the KNX IoT client. For this case study, we
discuss two main issues:

• Features coverage. In our findings, we note that the development process
required a deep study of the KNX IoT semantics, as well as the Vimar internal
semantics to understand how to create abstract objects. Moreover, the integration
of the three Vimar devices in the library (i.e. 2-way Switch, Actuator Module
and Actuator with Power Metering) has been accomplished to provide a proof of
concept of real devices. As a matter of fact, each device has been imported in the
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library according to the objects of the Vimar semantics. The entire feature set
of each Vimar device was also covered by the client library. Hence, a 3rd-party
manufacturer adopting the library is able to leverage the highest abstractions
(i.e. Vimar semantics) without learning the KNX IoT semantics.

• API performance. For this integration, we wanted to highlight the performance
of the KNX IoT integration to test a real use case scenario by using the client
library. As shown in 3.5.2, the overall results are pretty solid in terms of latency.
As a matter of fact, the average latency time over 5 session of approximately
25 minutes is 1.847s, which is inside the good threshold defined in Table 3.5.
However, the experiments showed a few notification misses caused by the API
service notification component. Additionally, a few latency spikes above the
tolerable threshold have been traced during the experiment. We want to point
that these events were expected, being the KNX IoT 3rd-party API server in a
pre-relase version at the time of the experiment. Nonetheless, in certain cases a
user would still find delays or blackout periods, whenever is unable to receive a
feedback of the devices through the Cloud. We note also that this condition can
happen under different circumstances, such as high network traffic, absence of
Internet connection and also low range distance of the IoT device to reach the
Wi-Fi connection. To prevent part of these problems, a company can improve
the performance of the Cloud solution to reduce latency times inside the Cloud
architecture.

Analysis comparison. We draw two main conclusions from the experimental results
discussed in this chapter.

First, we note that the Gateway-connected integration required a deep analysis to
understand the driver behaviors and the feature set covered in ZigBee and SmartThings.
On the other hand, the KNX IoT client for Cloud-to-Cloud integrations provides all
the available functions covered in the company Cloud through the KNX IoT 3rd-party
APIs. This ensures a higher versatility in terms of feature coverage, with respect to
the ZigBee firmware, which is limited by the SmartThings driver capabilities.

Secondly, we want to highlight the performance of a potential Cloud-to-Cloud inte-
gration through KNX IoT 3rd-party API standard. The Cloud-to-Cloud integration
provides latency times which depend on different factors. As discussed in 3.4.4, the
connectivity distance between a gateway and the Cloud location plays a key role to
reduce latency, because at a higher distance the response times of the APIs can be
higher, as shown previously in Figure 3.4. Moreover, a Cloud component may be
subject to slowdowns due to network traffic. As a matter of fact, a Cloud component
is employed to serve multiple clients. Hence, with a high number of requests the
connectivity might be unstable. Moreover, the Cloud-to-Cloud approach delegates
the entire part of the computing time to the Cloud through abstractions, rather than
the powerful gateway. This adds to the IoT architecture extra computing time to
handle user requests. As a matter of fact, we must note that a Gateway-connected
approach – that uses a local middleware – leverages the powerful gateway to handle
computing operations. Therefore, the latency time of a powerful gateway depends
on the processing unit (i.e. CPU) and on the network management capability of the
network protocol. The Cloud connection that happens through the Internet is inde-
pendent in this circumstance. In other words, an end user request sent with a mobile
application that connects to the powerful gateway through a local connection (e.g.
Wi-Fi, Bluetooth) can potentially be satisfied with a lower latency, being computed
without the Cloud – i.e. passing through a minor number of components. On the other
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hand, Cloud-to-Cloud integration provides higher latency times, since a single request
has more levels of abstractions to go through before being satisfied.

To bring this thesis to a close, in the next and final chapter, we provide a retro-
spective discussion with respect to the local middleware and remote middleware
solutions that we analyzed in this chapter. Then, we analyze the future of the IoT
study field, regarding user-interaction performance, technology comparison and new
emerging industry-standard protocols.





Chapter 4

Conclusions

4.1 Interoperability over standards
In this thesis, we have analyzed two middleware solutions, concerning a Gateway-
connected integration and a Cloud-to-Cloud integration. The former integration
concerns a SmartThings Hub-connected integration of five Vimar IoT devices using a
local middleware solution. The latter integration pertains to the KNX IoT 3rd-party
API standard integration of three Vimar IoT devices using a remote middleware solu-
tion. Both integrations leverage standard protocols to achieve interoperability. In this
section, we analyze the findings on the ZigBee protocol and the KNX IoT 3rd-party
API protocol to discuss the commissioning in a real-world use case.

Zigbee. The ZigBee protocol proved to be a versatile protocol to define device
functionalities. As a matter of fact, after analyzing the firmware implementation
with the company, we noticed that the ZigBee firmware covered most of the features
expected for the device, compared to the Bluetooth firmware. Although the standard
specifies several clusters and attributes to cover all possible functionalities of a device,
three issues concern the ZigBee protocol in terms of interoperability.

• Manufacturers require customization, even though the standard does not neces-
sarily provides for it. This is expected because a standard aims at the definition
of common features adopted by most devices in the industry market. When
an IoT device is designed with ZigBee, the required functionalities must be
included in the standard, otherwise they should not be implemented with non-
standard approaches. Nevertheless, board manufacturers allows the creation of
non-standard clusters, which are not covered by the ZigBee Cluster Library. This
approach harms the objective of a standard, despite offering customization for
manufacturer-specific purposes.

• The standard defines the features but not the behavior of the device. The ZigBee
standard covers most of the attributes and commands to interact with IoT
devices. However, two IoT devices can potentially have different behaviors, even
though the same ZigBee clusters are employed. For example, the Vimar Smart
Roller Shutter Switch employed for the SmartThings integration updates the
level of the shades at the end of the re-positioning operation, due to hardware
limitation. A Roller Shutter Switch from a different vendor might be able to
update this value during the re-positioning operation. In both cases, these devices
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are compliant with the standard, having the same exact cluster (i.e. Window
Covering). Therefore, in ZigBee, the behavior of the device is not fully defined by
the standard. Looking at a platform perspective (e.g. SmartThings), the exposed
UI should be able to provide all the device-specific functionalities, where the
standard is limited. As a matter of fact, in SmartThings the local middleware
(i.e. the driver) is able to fix the behavior of each IoT device. Therefore, if
this condition is is met, 3rd-party IoT devices can behave correctly in foreign
ecosystems.

• Only a part of the standard is actually employed by platform providers. With
the SmartThings ecosystem, the Hub-connected integration requires the use
of a ZigBee-enabled gateway. This gateway acts as a ZigBee Coordinator to
manage the IoT devices connected in a mesh network. We noticed that a big
limitation of the SmartThings platform was found with a Single-Point of Failure
device, which is in fact the gateway itself. One of the main characteristics
of ZigBee is self-healing. Hence, when a ZigBee Coordinator fails, it can be
replaced with a ZigBee Router device. Nevertheless, SmartThings employs
a provider-specific customization, which is exempt from the standard ZigBee
specification. This approach limits the potentiality of the standard to satisfy
platform provider needs. Moreover, SmartThings restricts the access of the
ZigBee network, thus enabling the gateway to control device registration and
interactions. As a matter of fact, the ZigBee Coordinator handles the devices
installation and the corresponding message exchange within the ZigBee network.
Therefore, the SmartThings-enabled Hub is the only responsible of the control
of the ZigBee network. Moreover, the Hub exploits the Cloud to send status
updates and receive commands. On this subject, we also note that routines are
controlled over the gateway, even though the ZigBee Cluster Library provides
support with the Scenes and Groups clusters. These clusters provide attributes
and commands to create automations and routines using the ZigBee protocol.
However, SmartThings uses its own implementation included in the gateway, so
as to control the IoT devices.

Figure 4.1: ZigBee integration pros and cons with respect to the results of §3.

As discussed above, the ZigBee standard is extremely versatile but potentially
not exploited in most functions by platform providers. This is normal, because each
provider aims at satisfying platform-specific needs. For example, we have seen that
SmartThings uses ZigBee in a non-conventional way to register new devices and control
the ZigBee network. However, this approach might lead to device firmware adapta-
tion for 3rd-party integrators to satisfy platform-specific functionalities. Moreover, a
3rd-party integrator that certifies its devices with the ZigBee standard can count on a
compliant product, even though the final commercial solution (i.e. the IoT device in
the 3rd-party ecosystem) is only partially ZigBee compliant. This condition results in
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an additional cost – in terms of development and maintenance – to adapt the device
firmware for the ZigBee certification and the 3rd-party platform. Consequently, we
note that this approach is advantageous for the IoT ecosystem control and customiza-
tion, but it can be expensive to provide interoperability based on standard-compliant
products.

KNX IoT 3rd-party APIs. From the analysis of the previous chapter, the KNX IoT
standard has been employed to provide 3rd-party integrators a way to use the company
IoT ecosystem. Our case study helps understand two main issues. On the one hand,
we have analyzed the approach of the company to build KNX IoT APIs through a
proprietary semantics. On the other hand, we have designed a way to integrate a Cloud-
to-Cloud solution with the KNX IoT 3rd-party APIs, based on different development
approaches. In this case study, the quest of interoperability is achieved in an abstract
sense, because the application layer is taken under analysis. As a matter of fact,
KNX IoT provides a REST API server interacting with the Cloud component, which
belongs to the processing layer. We note that the solution accomplish interoperability,
since the Vimar IoT ecosystem becomes available to 3rd-party developers. The role of
these developers can be either to create their custom 3rd-party application solution or
improve the availability of View Wireless devices in 3rd-party ecosystems. Therefore,
small manufacturers with a proprietary ecosystem can decide to add Vimar support
to their ecosystem, thus enlarging the available 3rd-party devices. Moreover, this
solution enables Vimar to re-use its solution for a Cloud-to-Cloud integration with
larger partners. Speaking of KNX IoT 3rd-party API standard, we noticed that the
current adoption in large IoT ecosystems (e.g. Amazon Alexa, Google Home) is still
absent. This is normal, because this standard is relatively new at the time of this
analysis. However, the addition of this standard to adapt current manufacturer-specific
semantics (and data-models) is supported by KNX. As a matter of fact, platform
providers may employ their own product languages to handle device abstractions with
custom semantics and data formats, as discussed in [54]. In our case study, two issues
concern the KNX IoT 3rd-party API client.

• Abstraction layers increase dependencies while hiding complexity. The client
library is structured in a 3-layer stack architecture, where each layer increases
the level of abstractions. The mid layer (i.e. the KNX IoT layer) handles the
KNX IoT objects using the HTTP layer (placed underneath) to populate data
structures. This generates a dependency between the two layers, because the
upper layer hides the complexity of the lower layers, so as to provide a simpler
interface. In fact, a simple interface facilitates the usability of the client library for
a developer, thus providing ready-to-use functions and objects. We should note
that the standard, instead, defines the way to reach these functionalities based
on a specification. Hence, the library allows a developer to customize each layer
according to the required functionalities. However, this implies that the developer
is aware of the interaction and the workflow between layers of the library, thus
requiring a higher level of complexity. In other words, a developer that wants
to extend the KNX IoT layer must learn the entities of the HTTP layer, thus
incurring a dependency. As a result, the maintenance of the library is a critical
operation, because it may break the compatibility of existing implementations.
In this case, we note that the company provides interoperability of IoT devices
through each layer of the library in different abstract forms. Hence, 3rd-party
developers are able to handle IoT devices according to the layer used in the
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integration.

• Reusability over a single programming language. The client library is provided to
3rd-party developers as a component of their integration solution. Each developer
can decide how to design its integration, based on the requirements of its interface.
In any case, we should note that the client is reusable as long as the library can
be included in 3rd-party integrations. For example, a user that uses the Swift
programming language to provide an application can use the KNX IoT client
library, as long as it is compatible with the programming language. This implies
that the client library must be replicated in different programming languages
to support multiple integration solutions. However, this translates to a cost for
the maintenance of each client library. In this case, we note that the company
achieves interoperability by supporting not only the standard – which exposes
a way to use functionalities –, but also the API client – which handles the way
to use functionalities and provides a ready-to-use interface in a programming
language.

Figure 4.2: KNX IoT client pros and cons with respect to the results of §3.

From a company perspective, we note that a client library is an extra resource
that must be maintained if provided as an integration solution. Nevertheless, it is
also important to promote the integration solutions of 3rd-party developers. On the
quest of interoperability, we have found that the client library achieves interoperability
through different levels of abstractions and through re-usability. Both characteristics
are the two critical features that a company must support for Cloud-to-Cloud solutions.
Otherwise, the lack of abstraction requires a complex language interpretation, and the
lack of re-usability – across programming languages or frameworks – does not cover
the needs of 3rd-party developers.

4.2 A retrospective on the contribution of this work

The case study that we have presented in this work focused on the quest for interoper-
ability through middleware-supported solutions. We note that the original middleware
definitions from §1 are in fact appropriate for the role of the intermediary component
in a Gateway-connected solution and in a Cloud-to-Cloud integration. In both solution,
the collaboration with a company employed in the IoT context was necessary to trace
a realistic scenario of the findings. Moreover, emerging problems have been discussed
to highlight new integration challenges. In the following paragraphs, we discuss a brief
retrospection of our work to trace what has been done and what requires a deeper
inspection for the future.
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Defining interoperability in IoT. We started by identifying the concept of in-
teroperability inside the IoT world. This required a survey on IoT architectures, with a
precise focus on smart-homes. We provided a 5-layer IoT architecture inspired from the
academic literature to define an IoT ecosystem. Then, we have discussed smart-homes
as an emerging IoT field with different modern challenges, regarding security, privacy
and device-awareness. Furthermore, we have analyzed the concept of interoperabil-
ity in smart-home IoT architectures. As a matter of fact, IoT architectures employ
interoperability using software components. These components act as intermediaries
(e.g. drivers) to control 3rd-party devices. Moreover, software components can control
IoT devices through Cloud-connected ecosystems leveraging Cloud intermediaries (e.g.
Cloud connectors, API client). From these premises, we have formalized the concept of
middleware in the IoT context. The middleware analysis focused on the approaches to
integrate different middleware solutions inside the 5-layer architecture. Consequently,
with the first part of this work we have paved the way to the analysis of commercial
solutions for 3rd-party device integration.

Figure 4.3: Home Assistant interaction example with Philips Hue light bulb and a
motion sensor.
Source: [47]

Integration solutions. We have reported a survey of modern commercial solutions
to provide integration of 3rd-party IoT devices. As shown in §2, we have studied major
companies having a big influence on the IoT market. In this regard, we note that several
platform providers can be worth studying so as to capture different approaches of IoT
integration. For example, Home Assistant [47] is an emerging self-hosted platform to
handle 3rd-party device integrations through Gateway-connected and Cloud-to-Cloud
integrations. This platform employs a server that acts as a powerful gateway to manage
IoT devices inside the house. The server is also the provider of applications and Cloud-
to-Cloud connections, thus enabling the user to avoid data externalization. Hence, with
this solution, the IoT platform can potentially be controlled offline, without requiring
an Internet connection – as long as Cloud-to-Cloud integration are not employed.
Similarly, Phoscon [66] from Dresden Elektronik is another self-hosted platform to
control 3rd-party IoT devices through ZigBee-enabled devices. Furthermore, we note
that several companies are also offering Platform-as-a-Service solutions (PaaS) to minor
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companies and device manufacturers. For example, Microsoft Azure IoT Suite [61] and
Particle [29] offers PaaS solutions to build a custom IoT platform belonging to a wide
range of business model, in addition to smart-home devices.

Company case study. We have divided the company case study in two parts
to highlight two sides of the challenges of interoperability. On the one hand, we acted
as external 3rd-party integrators, adding compatibility to IoT devices in a foreign plat-
form. On the other hand, we acted as platform providers, designing a way to interact
with the company platform for 3rd-party integrators. In each approach, we employed
a different mind-set to overcome the interoperability problem. Indeed, the former part
of the case study required a deep analysis of the Gateway-connected solution from
SmartThings and IoT devices from the company. The latter required a study of the
KNX IoT language in addition to the company data-model. From our analysis, we
had the opportunity to study different driver solutions regarding the SmartThings
integration, so as to trace feature coverage, complexity and compatibility problems. We
note that the Device Handler solution could have been an alternative to Edge Drivers
as long as a custom independent driver was developed to avoid re-using an existing
Device Handler. This would have helped in terms of future maintenance to reduce
dependencies with existing device handlers. Nonetheless, most functionalities would
have not be compatible, as compared to the Edge Driver solution. Hence, the Edge
Drivers are still a valuable trade-off in terms of maintenance and feature coverage, at the
cost of a moderate level of dependency (i.e. hierarchy of drivers). Regarding the second
part of the case study, we developed a client library capable of interacting with APIs.
Moreover, the client was also capable of receiving status updates of the IoT devices in
a reasonable latency, thus measuring the performance of a Cloud-to-Cloud integration.
We note that the alternatives to a client library based on a stack architecture were
limited. In fact, a straightforward integration would have required a custom solution
to directly bind one interface to the other. This solution can be employed for a single
integration. Otherwise, multiple integrations require re-usable components to handle
objects from the same interface (i.e. KNX IoT 3rd-party APIs) with the correct data-
model interpretation. Therefore, a client library reduces code duplication. Moreover,
when the KNX IoT interface is updated, the modifications of the middleware solutions
are also reduced, being the library re-usable in multiple integrations (e.g. if several
Cloud-to-Cloud integrations using the client library require an update, then the client
library can be updated once and deployed to each integration, reducing time and costs).

The concept of middleware. After analyzing different middleware solutions, we
stepped into a real use case scenario to study the profound nature of the middleware.
Our findings shows that the concept of middleware can be employed in different context,
belonging to Cloud and IoT architectures. Article [7] shows that in modern applications
the middleware is closely connected to the concept of APIs. In detail, the authors of the
article explain that a middleware can simplify sophisticated applications since develop-
ers can focus on the business-logic and the interactions of systems, besides components
communication. In fact, the KNX IoT client library addresses the communication with
the KNX IoT 3rd-party APIs while providing a modular and abstract way to handle
systems interactions. Moreover, the business-logic of a remote middleware handles the
data interpretation to provide control over interface-specific objects, thus interpreting
correct device behaviors. Speaking of local middleware solution, this approach is also
equivalent to driver integration. In fact, an edge driver describes the business-logic
through function handlers to rule an IoT device according to different interfaces.
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Future improvements. In this work, we have analyzed only two solutions regarding
Gateway-connected and Cloud-to-Cloud integrations. We note that a Direct device
integration would help understand a different local middleware implementation, as
compared to Gateway-connected integration. Indeed, Direct device integration requires
a local middleware equipped inside the device itself to work directly with either the
Cloud or a mobile device. Therefore, the IoT device must be equipped with a Wi-Fi (or
Bluetooth) module. Moreover, the IoT device firmware must employ the intermediary
component to provide an interface (e.g. MQTT) towards the foreign IoT ecosystem.
Nonetheless, building a single device that is capable of all three integrations requires a
lot of time and work, because many different components of the IoT architecture must
be employed to accomplish each integration. Eventually, this integration would be
helpful to trace performance results. For example, in all three integrations, the latency
that elapses in a request between the perception layer and the application layer could
indicate which solution has the fastest response time.

Speaking of the 5-layer architecture, we note that the business layer does not
directly concern the interoperability of an IoT device, being the highest layer of the
stack. However, we can interpret the business layer as an additional part of the IoT
integration, which is worth studying to analyze the added-values in the architecture. In
fact, an IoT ecosystem is able to collect data that can be employed to provide statistics
through the business layer. Article [5] shows that large-scale data processing units can
be employed in Smart Buildings to provide energy management and HVAC (Heating
Ventilation and Air Conditioning) management. These applications leverages data
exploration through algorithms involving Machine Learning, to produce prediction
models, and also Data Mining, to extract meaningful information.

Speaking of protocols, the Connectivity-Standard Alliance has created a new
emerging standard protocol called Matter, as discussed in §2. This new protocol
provides interoperability with device manufacturers and platform providers. At the
time of this writing, Google Home, Amazon Alexa, SmartThings and Apple HomeKit
will support this new protocol in their integration through a Gateway-connected solution.
For the future, we note that Matter is worth studying to understand how the protocol
behaves compared to existing standards. Moreover, an analysis of this protocol can
include feature coverage and also performance across different manufacturers solutions.
In the following section, we want to give a brief overview of the main characteristics of
Matter to show the direction of a new emerging standard protocol.

4.2.1 Matter: a new emerging standard

In this thesis, we have analyzed the impact of standards in the context of IoT inte-
grations. Matter is one of the newest emerging standard that we previously discussed
in §2. In fact, Google Home, Amazon Alexa and Apple HomeKit have introduced
in their documentation the compatibility with this standard. However, we want to
point out that, at the time of this writing, this standard is not yet commercialized. An
online news article [58] reported the release date of Matter for the end of 2022, as also
announced by the CSA. At the current state, the standard has been partially defined.
In this section, we provide a few highlights of Matter concerning the architecture and
the main solutions to provide interoperability.

Architecture overview. Matter aims at providing interoperability on top of exist-
ing IoT solutions. In order to accomplish this purpose, Matter works on top of the
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IPv6-based transport protocols. Therefore, in a ISO/OSI stack architecture Matter is
defined on top of the Host layers (i.e. Transport, Session, Presentation and Application
layers). Figure 4.4 shows a stack architecture with different network protocols used
by Matter. These protocols are defined by IEEE standards and belong to the Media
layers (i.e. Physical, Data Link and Network layers). In fact, Matter is compatible
with Wi-Fi and Ethernet to allow remote control to the user through the Internet.
These protocols are also employed to control powerful IoT devices, which require an
high network bandwidth (e.g. video cameras, intercoms). Furthermore, Matter is also
compatible with Bluetooth LE and 802.15.4-based devices. We note that the ZigBee
protocol is not directly compatible with Matter. In fact, Matter requires a bridge
between a ZigBee Hub and a Matter-enabled Hub, thus adding Matter capabilities to
ZigBee devices.

Figure 4.4: Matter architecture overview in parallel with the ISO/OSI stack layers and
the TCP/IP model. Note: we specify IPv6 (instead of IP), Host layers and Media

layers, compared to the original figure.
Source: adapted from [91]

In addition to these protocols, Matter supports Thread [92], which is an emerging
open-standard protocol that provides interoperability using the 802.15.4 networks. This
protocol employs a mesh network to connect multiple IoT devices without requiring a
vendor-specific hub. Thread can be integrated with existing hubs (e.g. Alexa-enabled
Hub, Google Home devices), thus reducing the cost of the IoT network infrastructure.
These hubs are called Thread Border Routers and act as a sub-network handlers, as
shown in Figure 4.5. Moreover, each IoT device inside the Thread network acts as an
access point, which handles the connections and the interaction with other IoT devices.
Therefore, with Thread there is no Single-Point-of-Failure, because when an IoT device
fails, it can be immediately replaced with any other node inside the network, similarly
to ZigBee.
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Discussion. We note that Matter leverages Thread to control low-powered IoT
devices, while Thread employs the IEEE 802.15.4 standard to manage 802.15.4-based
IoT devices. Therefore, Matter aims at the structure of the IoT application (i.e. the IoT
device business-logic and the corresponding functionalities and security mechanisms),
while Thread, Wi-Fi, Ethernet and BLE are employed to manage the connection with
IoT devices. We want to point out that Matter achieves high compatibility with
existing IoT devices facilitating implementation in commercialized solutions through
software updates. In fact, since Matter is an application component, it is not hardware
limited, hence the adoption rate is potentially high. On the other hand, Thread can
be employed as an alternative of existing ZigBee/Z-wave devices, since the hardware
(e.g. radio antenna) is compatible with the IEEE 802.15.4 standard. As a matter
of fact, since ZigBee is not supported by Matter, a few problems arise in terms of
interoperability, because manufacturers must provide bridge-based solutions to enable
ZigBee devices in Matter networks. A bridge acts as a middleware de facto, which
provides interoperability between two industry standards (e.g. Matter and ZigBee,
Matter and Z-Wave). This component must be employed inside a powerful gateway to
provide compatibility, thus opening a new scenario of a Bridge-connected (or Gateway-
to-Gateway) integrations. For the future, the evolution of new integrations shall be
analyzed to understand the implications and the performance of IoT solutions.

Figure 4.5: Matter topology example using Thread in a simple mesh network with
etherogeneous IoT devices.

Source: [60]

4.3 Final notes

This thesis provides a complete analysis of 3rd-party integrations seeking interop-
erability of smart-home devices. We note that the growth of smart-homes brought
several issues to the attention of the industry and the academic literature. In fact,
new experiments and applications provide a way to address existing problems and
propose new solutions. We have analyzed in detail the concept of middleware, as the
main component that promotes interoperability in different forms. At the time of
this writing, we have learned that the modern technologies are evolving in new forms
to accomplish industry needs. In their turn, industry needs come from commercial
and market needs provided by customers and clients. The aim of smart-homes is
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to provide a new living comfort, while also addressing critical environmental issues
through energy consumption control. Furthermore, social implications arise from the
fact that the industry have control over data collected from the habits of customers,
which is a particularly important aspect of the privacy research field. From the security
viewpoint, IoT devices can be vectors of attack, especially in external integrations
where security protocols are employed across different ecosystems. A recent research
[7] shows that new IoT networks will be able to interact autonomously with their
surroundings, without requiring a human intervention. The strict consequence of this
evolution leads to the concept of pervasive computing – also called ubiquitous computing.
Pervasive computing is defined as the entirety of contextualized services originating
in a digital world, which are perceived through the physical world. Hence, computers
are no longer identified as single devices or network of devices, because every IoT
device provides a set of services contextualized to the device purpose. The way these
devices will be employed in the future depends on the evolution of interoperability in
the context of IoT.

To conclude, this thesis analyzes the IoT world to capture the workflow of architec-
tural components, which allow warranting interoperability. Standard protocols are able
to achieve interoperability, but sometimes they are unable to capture the advanced
behavior of actual devices, leading manufacturers to customize their solutions. On the
other hand, proprietary protocols enhance customization, at the cost of a minor adop-
tion and support. Another important issue analyzed in the thesis is the interpretation
of the data-model through data-format and semantics. We have seen that data-models
are generally company-defined according to device requirements. In fact, the role of the
middleware provides control over interfaces, while interpreting different data-models to
define the business-logic of IoT devices. For the future evolution, we expect to see how
the upcoming standards will be able to address the emerging challenges, and how far
they will win the adherence of the industrial actors.
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